Contact us
Call us at
Available 6:00 AM – 5:00 PM (PST) Business Days
Download
Download Manuals, Datasheets, Software and more:
Feedback

Double pulse testing
Create waveforms and automate
testing of power devices
Faster time to market for your power conversion designs
Semiconductor materials used in power electronics are transitioning from silicon to wide bandgap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) due to their superior performance in automotive and industrial applications. However, minimizing switching losses continues to be a major challenge for power device engineers.
Double Pulse Testing is the standard method for measuring the switching parameters of MOSFETs or IGBT power devices. Historically this has been a time-consuming process to set up the double pulse test since function generators do not have a built-in way to configure and set up the test.
But now, the Tektronix 4, 5 and 6 Series MSOs offer automated double-pulse testing measurements and the AFG31000 arbitrary function generator has a built-in software application that enables easy double pulse signal generation. This combination dramatically simplifies double pulse testing.
How Double Pulse Test Works
The double pulse test is done with an inductive load and a power supply. The inductor is used to replicate circuit conditions in a converter design. The power supply is used to provide voltage to the inductor. An arbitrary function generator is used to output pulses that triggers the gate of the MOSFET and thus turns it on to start conduction of current.

Double pulse test circuit

Current flow with MOSFETs as DUTs
How to generate gate drive signals for a double pulse test
A function generator may be used to generate the gate drive signal to perform a double pulse test. The Tektronix AFG31000 has a built-in double pulse application to create the pulses with varying pulse widths.

Equipment set up for conducting a double pulse test

Double Pulse Test set up screen on the AFG31000 arbitrary function generator
How to measure turn-on and turn-off timing and energy losses

Double pulse test waveforms shown on the oscilloscope
Typical double pulse test waveforms are captured and measured using an oscilloscope. In order to calculate the turn-on and the turn-off parameters, we look at the falling edge of the first pulse and the rising edge of the second pulse. Care must be taken in setting the gating regions, since any inconsistency will impact repeatability. Even with care, consistent results can be elusive due to ringing caused by parasitics.
The Wide Bandgap Double Pulse Test application (Opt. WBG-DPT) on the 4/5/6 Series B MSO offers precise double-pulse measurements that make testing easier. The application offers automated switching, timing, and diode reverse recovery measurements per JEDEC and IEC standards. Detailed configuration options enable analyzing real world waveforms and testing beyond standards specification. For more information, refer to the short video in the link below.
Measure reverse recovery
Reverse recovery current occurs during the turn-on of the second pulse. As shown in Figure 20, the diode is conducting in a forward condition during phase 2. As the low side MOSFET turns on again, the diode should immediately switch to a reverse blocking condition; however, the diode will conduct in a reverse condition for a short period of time, which is known as the reverse recovery current. This reverse recovery current is translated into energy losses, which directly impact the efficiency of the power converter. The measurements are now done on the high side MOSFET. Id is measured through the high side MOSFET and Vsd across the diode.

Diode reverse recovery
Generate cleaner waveforms in less time
AFG31000 Series Arbitrary/Function Generators

The touchscreen AFG31000 Series offers real-time waveform monitoring, programmable sequencing, and low-noise for better testing made simple.
Advanced power measurement and analysis
4/5/6 Series MSO Mixed Signal Oscilloscopes

With innovative pinch-swipe-zoom touchscreen user interfaces, 12-bit analog-to-digital converters, large high-definition displays, and up to 8 FlexChannel® inputs, the 4/5/6 Series MSOs are ready for today’s toughest challenges, and tomorrow’s too. It sets a new standard for performance, analysis, and overall user experience.
Reduce wide bandgap design time
IsoVu Isolated Probes

IsoVu® probes are the right tool for today’s demandig power measurement challenges. They offer industry-leading 1 GHz bandwidth, 160 dB or 100 Million to 1 common mode rejection, 60 kV common mode voltage, large ± 2500 V differential range and superior probe loading.
Automated Double Pulse Testing
Opt. 4/5/6-WBG-DPT

The Wide Bandgap Double Pulse Test application (Opt. WBG-DPT) on the 4/5/6 Series B MSO offers precise double-pulse measurements that make testing easier.