Mixed Signal Oscilloscope Datasheet

5 Series MSO

Read Online:


5-Series-MSO-Datasheet


Strength in numbers

Input channels

  • 4, 6, or 8 FlexChannel® inputs
  • Each FlexChannel provides one analog signal input or eight digital logic inputs with TLP058 logic probe

Bandwidth

  • 350 MHz, 500 MHz, 1 GHz, 2 GHz (upgradable)

Sample rate (all analog / digital channels)

  • Real-time: 6.25 GS/s
  • Interpolated: 500 GS/s

Record length (all analog / digital channels)

  • 62.5 Mpoints standard
  • 125 Mpoints optional upgrade

Waveform capture rate

  • >500,000 waveforms/s

Vertical resolution

  • 12-bit ADC
  • Up to 16-bits in High Res mode

Standard trigger types

  • Edge, Pulse Width, Runt, Timeout, Window, Logic, Setup & Hold, Rise/Fall Time, Parallel Bus, Sequence

Standard analysis

  • Cursors: Waveform, V Bars, H Bars, V&H Bars
  • Measurements: 36 
  • FastFrameTM: Segmented memory acquisition mode with maximum trigger rate >5,000,000 waveforms per second
  • Plots: Time Trend, Histogram and Spectrum
  • Math: basic waveform arithmetic, FFT, and advanced equation editor
  • Search: search on any trigger criteria
  • Jitter: TIE and Phase Noise

Optional analysis1

  • Advanced Jitter and Eye Diagram Analysis
  • Advanced Power Analysis

Optional serial bus trigger, decode and analysis1

  • I2C, SPI, RS-232/422/485/UART, CAN, CAN FD, LIN, FlexRay, SENT, USB 2.0, Ethernet, I2S, LJ, RJ, TDM, MIL-STD-1553, ARINC 429 

Arbitrary/Function Generator1

  • 50 MHz waveform generation
  • Waveform Types: Arbitrary, Sine, Square, Pulse, Ramp, Triangle, DC Level, Gaussian, Lorentz, Exponential Rise/Fall, Sin(x)/x, Random Noise, Haversine, Cardiac

Digital voltmeter2

  • 4-digit AC RMS, DC, and DC+AC RMS voltage measurements

Trigger frequency counter2

  • 8-digit

Display

  • 15.6-inch (396 mm) TFT color
  • High Definition (1,920 x 1,080) resolution
  • Capacitive (multi-touch) touchscreen

Connectivity

  • USB Host (7 ports), USB Device (1 port), LAN (10/100/1000 Base-T Ethernet; LXI Compliant), Display Port, DVI-D, Video Out

e*Scope®3

  • Remotely view and control the oscilloscope over a network connection through a standard web browser

Standard probes

  • One 10 MΩ passive voltage probe with less than 4 pF capacitive loading per channel

Warranty

  • 3 years standard with optional Total Protection Plans

Dimensions

  • 12.2 in (309 mm) H x 17.9 in (454 mm) W x 8.0 in (204 mm) D
  • Weight: <25 lbs. (11.4 kg)

1Optional and upgradeable.

2Free with product registration.

3Currently not available in instruments with option 5-WIN, SUP5-WIN installed (Microsoft Windows 10).

Never let a lack of channels slow down your verification and debug process again!

The 5 Series MSO offers better visibility into complex systems by offering four, six and eight channel models with a large 15.6" high definition (1,920 x 1,080) display. Many applications, such as embedded systems, three-phase power electronics, automotive electronics, power supply design, and DC-to-DC power converters, require the observation of more than four analog signals to verify and characterize device performance, and to debug challenging system issues.

Most engineers can recall situations in which they were debugging a particularly difficult problem and wanted greater system visibility and context, but the scope they were using was limited to two or four analog channels. Using a second scope involves significant effort to align trigger points, difficulty in determining timing relationships across the two displays, and documentation challenges.

And while you might assume that a six and eight channel scope would cost 50% or 100% more than a four channel scope, you'll be pleasantly surprised to find that six channel models are only ~25% more than four channel models and eight channel models are only ~67% more than four channel models. The additional analog channels can pay for themselves quickly by enabling you to keep current and future projects on schedule.


5-Series-MSO-Datasheet


Voltage measurements on a three-phase motor showing the three-phase input voltages after start-up.

FlexChannel®technology enables maximum flexibility and broader system visibility

The 5 Series MSO redefines what a Mixed Signal Oscilloscope (MSO) should be. FlexChannel technology enables each of the inputs on the instrument to be used as a single analog channel or eight digital channels. The conversion is done by simply attaching a TLP058 logic probe to any input. Imagine the flexibility and configurability this provides.

With an eight FlexChannel model, you can configure it to look at eight analog and zero digital signals. Or seven analog and eight digital. Or six analog and 16 digital, five analog and 24 digital and so on. You can change the configuration at any time by simply adding or removing TLP058 logic probes, so you always have the right number of digital channels.


5-Series-MSO-Datasheet


FlexChannel technology enables the ultimate in flexibility. Each input can be configured as a single analog or eight digital channels based on the type of probe you attach.

The 5 Series MSO offers a new level of integration of digital channels. Digital channels share the same high sample rate (up to 6.25 GS/s) for fine timing resolution, and long record length (up to 125 Mpoints) for long time captures as analog channels. Previous-generation MSOs required tradeoffs, with digital channels having lower sample rates or shorter record lengths than analog channels.


5-Series-MSO-Datasheet


The TLP058 provides eight high performance digital inputs. Connect as many TLP058 probes as you like, enabling up to a maximum of 64 digital channels.


5-Series-MSO-Datasheet

FlexChannel 2 has a TLP058 Logic Probe connected to the eight inputs of a DAC. Notice the green and blue color coding, where ones are green and zeros are blue. Another TLP058 Logic Probe on FlexChannel 3 is probing the SPI bus driving the DAC. The white edges indicate higher frequency information is available by either zooming in or moving to a faster sweep speed on the next acquisition.

Color-coded digital traces make it easy to determine if a logic signal is a one or a zero, even when the trace is flat across the display. Ones are displayed in green and zeros in blue. Unique multiple-transition detection hardware indicates when more than one transition occurs within a sample interval. A white bar on the trace indicates that more information is available by zooming in or acquiring at faster sampling rates. Often, zooming in will reveal a glitch that was previously hidden. Distinct thresholds can be defined for each digital channel, enabling you to easily observe different logic families, unlike other MSOs that have one or two shared thresholds across all digital channels.

Unprecedented signal viewing capability

The stunning 15.6" (396 mm) display in the 5 Series MSO is the largest display in the industry, providing 100% more display area than a scope with a 10.4" (264 mm) display. It is also the highest resolution display, with full HD resolution (1,920 x 1,080), enabling you to see many signals at once with ample room for critical readouts and analysis.

The viewing area is optimized to ensure that the maximum vertical space is available for waveforms. The Results Bar on the right can be hidden, enabling the waveform view to use the full width of the display.


5-Series-MSO-Datasheet


Stacked display mode enables easy visibility of all waveforms while maintaining maximum ADC resolution on each input for the most accurate measurements.

The 5 Series MSO offers a revolutionary new Stacked display mode. Historically, scopes have overlaid all waveforms in the same graticule, forcing difficult tradeoffs:

  • To make each waveform visible, you vertically scale and position each waveform so that they don't overlap. Each waveform uses a small percentage of the available ADC range, leading to less accurate measurements.

  • For measurement accuracy, you vertically scale and position each waveform to cover the entire display. The waveforms overlap each other, making it hard to distinguish signal details on individual waveforms

The new Stacked display eliminates this tradeoff. It automatically adds and removes additional horizontal waveform 'slices' (additional graticules) as waveforms are created and removed. Each slice represents the full ADC range for the waveform. All waveforms are visually separated from each other while still using the full ADC range, enabling maximum visibility and accuracy. And it's all done automatically as waveforms are added or removed!

The massive display in the 5 Series MSO also provides plenty of viewing area not only for signals, but also for plots, measurement results tables, bus decode tables and more. You can easily resize and relocate the various views to suit your application.


5-Series-MSO-Datasheet


Viewing three analog channels, eight digital channels, a decoded serial bus waveform, decoded serial packet results table, four measurements, a measurement histogram, measurements results table with statistics and a search on serial bus events - simultaneously!

Exceptionally easy-to-use user interface lets you focus on the task at hand

The Settings Bar - key parameters and waveform management

Waveform and scope operating parameters are displayed in a series of “badges” in the Settings Bar that runs along the bottom of the display. The Settings Bar provides Immediate access for the most common waveform management tasks. With a single tap, you can:

  • Turn on channels
  • Add math waveforms
  • Add reference waveforms
  • Add bus waveforms
  • Enable the integrated Arbitrary/Function generator (AFG)
  • Enable the integrated digital voltmeter (DVM)

The Results Bar - analysis and measurements

The Results Bar on the right side of the display includes immediate, one-tap access to the most common analytical tools such as cursors, measurements, searches, measurement and bus decode results tables, plots, and notes.

DVM, measurement and search results badges are displayed in the Results Bar without sacrificing any waveform viewing area. For additional waveform viewing area, the Results Bar can be dismissed and brought back at any time.


5-Series-MSO-Datasheet


Configuration menus are accessed by simply double-tapping on the item of interest on the display. In this case, the Trigger badge was double-tapped to open the Trigger configuration menu.

Touch interaction finally done right

Scopes have included touch screens for years, but the touch screen has been an afterthought. The 5 Series MSO's 15.6" display includes a capacitive touchscreen and provides the industry's first oscilloscope user interface truly designed for touch.

The touch interactions that you use with phones and tablets, and expect in a touch enabled device, are supported in the 5 Series MSO.

  • Drag waveforms left/right or up/down to adjust horizontal and vertical position or to pan a zoomed view
  • Pinch and expand to change scale or zoom in/out in either horizontal or vertical directions
  • Drag items to the trash can to delete them
  • Swipe in from the right to reveal the Results Bar or down from the top to access the menus in the upper left corner of the display

Smooth, responsive front panel controls allow you to make adjustments with familiar knobs and buttons, and you can add a mouse or keyboard as a third interaction method.


5-Series-MSO-Datasheet

Interact with the capacitive touch display in the same way you do on your phones and tablets.

Attention to detail in the front-panel controls

Traditionally, the front face of a scope has been roughly 50% display and 50% front panel. The 5 Series MSO display fills about 85% of the face of the instrument. To achieve this, it has a streamlined front panel that retains critical controls for simple intuitive operation, but with a reduced number of menu buttons for functions directly accessed via objects on the display.

Color-coded LED light rings indicate trigger source and vertical scale/position knob assignments. Large, dedicated Run/ Stop and Single Sequence buttons are placed prominently in the upper right, and other functions like Force Trigger, Trigger Slope, Trigger Mode, Default Setup, Autoset and Quick-save functions are all available using dedicated front panel buttons.


5-Series-MSO-Datasheet


Efficient and intuitive front panel provides critical controls while still leaving room for the massive 15.6" high definition display.

Windows or not - you choose

The 5 Series MSO is the first oscilloscope to offer you the choice of whether to include a Microsoft Windows™ operating system. Opening an access panel on the bottom of the instrument reveals a connection for a solid state drive (SSD). When the SSD is not present, the instrument boots as a dedicated scope with no ability to run or install other programs.

When the SSD is present, the instrument boots in an open Windows 10 configuration, so you can minimize the oscilloscope application and access a Windows desktop where you can install and run additional applications on the oscilloscope. Or you can connect additional monitors and extend your desktop.

Whether you run Windows or not, the oscilloscope operates in exactly the same way with the same look and feel and UI interaction.

Need higher channel density?

The 5 Series MSO is also available in a low-profile form factor - the MSO58LP. With eight 1 GHz input channels plus an auxiliary trigger input, in a 2U high package and 12-bit ADCs, the 5 Series MSO Low Profile sets a new standard for performance in applications where extreme channel density is required.


5-Series-MSO-Datasheet


Experience the performance difference

With up to 2 GHz analog bandwidth, 6.25 GS/s sample rates, standard 62.5 M record length and a 12-bit analog to digital converter (ADC), the 5 Series MSO has the performance you need to capture waveforms with the best possible signal fidelity and resolution for seeing small waveform details.

Digital Phosphor technology with FastAcq™ high-speed waveform capture

To debug a design problem, first you must know it exists. Digital phosphor technology with FastAcq provides you with fast insight into the real operation of your device. Its fast waveform capture rate - greater than 500,000 waveforms per second - gives you a high probability of seeing the infrequent problems common in digital systems: runt pulses, glitches, timing issues, and more. To further enhance the visibility of rarely occurring events, intensity grading indicates how often rare transients are occurring relative to normal signal characteristics.


5-Series-MSO-Datasheet


FastAcq's high waveform capture rate enables you to discover infrequent problems common in digital design.

Industry leading vertical resolution

The 5 Series MSO provides the performance to capture the signals of interest while minimizing the effects of unwanted noise when you need to capture high-amplitude signals while seeing smaller signal details. At the heart of the 5 Series MSO are 12-bit analog-to-digital converters (ADCs) that provide 16 times the vertical resolution of traditional 8-bit ADCs.

A new High Res mode applies a hardware-based unique Finite Impulse Response (FIR) filter based on the selected sample rate. The FIR filter maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the oscilloscope amplifiers and ADC above the usable bandwidth for the selected sample rate. High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at ≤125 MS/s sample rates.

New lower-noise front end amplifiers further improve the 5 Series MSO's ability to resolve fine signal detail.


5-Series-MSO-Datasheet


The 5 Series MSOs 12-bit ADC along with the new High Res mode enable industry leading vertical resolution.

Triggering

Discovering a device fault is only the first step. Next, you must capture the event of interest to identify root cause. The 5 Series MSO provides a complete set of advanced triggers, including:

  • Runt
  • Logic
  • Pulse width
  • Window
  • Timeout
  • Rise/fall time
  • Setup and hold violation
  • Serial packet
  • Parallel data
  • Sequence

With up to a 125 Mpoint record length, you can capture many events of interest, even thousands of serial packets in a single acquisition, providing high-resolution to zoom in on fine signal details and record reliable measurements.


5-Series-MSO-Datasheet


The wide variety of trigger types and context-sensitive help in the trigger menu make it easier than ever to isolate the event of interest.

Accurate high-speed probing

The TPP Series passive voltage probes included with every 5 Series MSO offer all the benefits of general-purpose probes -- high dynamic range, flexible connection options, and robust mechanical design, while providing the performance of active probes. Up to 1 GHz analog bandwidth enables you to see high frequency components in your signals, and extremely low 3.9 pF capacitive loading minimizes adverse effects on your circuits and is more forgiving of longer ground leads.

An optional, low-attenuation (2X) version of the TPP probe is available for measuring low voltages. Unlike other low-attenuation passive probes, the TPP0502 has high bandwidth (500 MHz) as well as low capacitive loading (12.7 pF).


5-Series-MSO-Datasheet


5 Series MSOs come standard with one TPP0500B (350 MHz, 500 MHz models) or TPP1000 (1 GHz, 2 GHz models) probe per channel.

TekVPI Probe Interface

The TekVPI®probe interface sets the standard for ease of use in probing. In addition to the secure, reliable connection that the interface provides, many TekVPI probes feature status indicators and controls, as well as a probe menu button right on the comp box itself. This button brings up a probe menu on the oscilloscope display with all relevant settings and controls for the probe. The TekVPI interface enables direct attachment of current probes without requiring a separate power supply. TekVPI probes can be controlled remotely through USB or LAN, enabling more versatile solutions in ATE environments. The 5 Series MSO provides up to 80 W of power to the front panel connectors, sufficient to power all connected TekVPI probes without the need for an additional probe power supply.

IsoVu™ Isolated Measurement System

Whether designing an inverter, optimizing a power supply, testing communication links, measuring across a current shunt resistor, debugging EMI or ESD issues, or trying to eliminate ground loops in your test setup, common mode interference has caused engineers to design, debug, evaluate, and optimize "blind" until now.

Tektronix' revolutionary IsoVu technology uses optical communications and power-over-fiber for complete galvanic isolation. When combined with the 5 Series MSO equipped with the TekVPI interface, it is the first, and only, measurement system capable of accurately resolving high bandwidth, differential signals, in the presence of large common mode voltage with:

  • Complete galvanic isolation

  • Up to 1 GHz bandwidth

  • 1 Million to 1 (120 dB) common mode rejection at 100 MHz

  • 10,000 to 1 (80 dB) of common mode rejection at full bandwidth

  • Up to 2,500 V differential dynamic range

  • 60 kV common mode voltage range


5-Series-MSO-Datasheet


The Tektronix TIVM Series IsoVu™ Measurement System offers a galvanically isolated measurement solution to accurately resolve high bandwidth, differential signals up to 2,500 Vpk in the presence of large common mode voltages, with the best in class common mode rejection performance across its bandwidth.

Comprehensive analysis for fast insight

Basic waveform analysis

Verifying that your prototype's performance matches simulations and meets the project's design goals requires careful analysis, ranging from simple checks of rise times and pulse widths to sophisticated power loss analysis, characterization of system clocks, and investigation of noise sources.

The 5 Series MSO offers a comprehensive set of standard analysis tools including:

  • Waveform- and screen-based cursors
  • 36 automated measurements. Measurement results include all instances in the record, the ability to navigate from one occurrence to the next, and immediate viewing of the minimum or maximum result found in the record
  • Basic waveform math
  • FFT analysis
  • Advanced waveform math including arbitrary equation editing with filters and variables
  • FastFrame™ Segmented Memory enables you to make efficient use of the oscilloscope’s acquisition memory by capturing many trigger events in a single record while eliminating the large time gaps between events of interest. View and measure the segments individually or as an overlay.

Measurement results tables provide comprehensive statistical views of measurement results with statistics across both the current acquisition and all acquisitions.


5-Series-MSO-Datasheet


Using automated measurements to characterize power supply bring up.

Navigation and search

Finding your event of interest in a long waveform record can be time consuming without the right search tools. With today's record lengths of many millions of data points, locating your event can mean scrolling through literally thousands of screens of signal activity.

The 5 Series MSO offers the industry's most comprehensive search and waveform navigation with its innovative Wave Inspector®controls. These controls speed panning and zooming through your record. With a unique force-feedback system, you can move from one end of your record to the other in just seconds. Or, use intuitive drag and pinch/expand gestures on the display itself to investigate areas of interest in a long record.

The Search feature allows you to automatically search through your long acquisition looking for user-defined events. All occurrences of the event are highlighted with search marks and are easily navigated to, using the Previous ( ← ) and Next ( → ) buttons found on the front panel or on the Search badge on the display. Search types include edge, pulse width, timeout, runt, window, logic, setup and hold, rise/fall time and parallel/serial bus packet content. You can define as many unique searches as you like.

You can also quickly jump to the minimum and maximum value of search results by using the Min and Max buttons on the Search badge.


5-Series-MSO-Datasheet


Earlier, FastAcq revealed the presence of a runt pulse in a digital data stream prompting further investigation. In this long 20 ms acquisition, Search 1 reveals that there are approximately 37,500 rising edges in the acquisition. Search 2 (run simultaneously) reveals that there are six runt pulses in the acquisition.

Serial protocol triggering and analysis (optional)

During debugging, it can be invaluable to trace the flow of activity through a system by observing the traffic on one or more serial buses. It could take many minutes to manually decode a single serial packet, much less the thousands of packets that may be present in a long acquisition.

And if you know the event of interest that you are attempting to capture occurs when a particular command is sent across a serial bus, wouldn't it be nice if you could trigger on that event? Unfortunately, it's not as easy as simply specifying an edge or a pulse width trigger.


5-Series-MSO-Datasheet


Triggering on a USB full-speed serial bus. A bus waveform provides time-correlated decoded packet content including Start, Sync, PID, Address, End Point, CRC, Data values, and Stop, while the bus decode table presents all packet content from the entire acquisition.

The 5 Series MSO offers a robust set of tools for working with the most common serial buses found in embedded design including I2C, SPI, RS-232/422/485/UART, CAN, CAN FD, LIN, FlexRay, SENT, USB LS/FS/HS, Ethernet 10/100, Audio (I2S/LJ/RJ/TDM), MIL-STD-1553, and ARINC 429.

Serial protocol search enables you to search through a long acquisition of serial packets and find the ones that contain the specific packet content you specify. Each occurrence is highlighted by a search mark. Rapid navigation between marks is as simple as pressing the Previous ( ← ) and Next ( → ) buttons on the front panel or in the Search badge that appears in the Results Bar.

Parallel buses are still found in many designs. The tools described for serial buses also work on parallel buses. Support for parallel buses is standard in the 5 Series MSO. Parallel buses can be up to 64 bits wide and can include a combination of analog and digital channels.

  • Serial protocol triggering lets you trigger on specific packet content including start of packet, specific addresses, specific data content, unique identifiers, and errors.

  • Bus waveforms provide a higher-level, combined view of the individual signals (clock, data, chip enable, and so on) that make up your bus, making it easy to identify where packets begin and end, and identifying sub-packet components such as address, data, identifier, CRC, and so on.

  • The bus waveform is time aligned with all other displayed signals, making it easy to measure timing relationships across various parts of the system under test.

  • Bus decode tables provide a tabular view of all decoded packets in an acquisition much like you would see in a software listing. Packets are time stamped and listed consecutively with columns for each component (Address, Data, and so on).

Jitter analysis

The 5 Series MSO has seamlessly integrated the DPOJET Essentials jitter and eye pattern analysis software package, extending the oscilloscope's capabilities to take measurements over contiguous clock and data cycles in a single-shot real-time acquisition. This enables measurement of key jitter and timing analysis parameters such as Time Interval Error and Phase Noise to help characterize possible system timing issues.

Analysis tools, such as plots for time trends and histograms, quickly show how timing parameters change over time, and spectrum analysis quickly shows the precise frequency and amplitude of jitter and modulation sources.

Option 5-DJA adds additional jitter analysis capability to better characterize your device's performance. The 31 additional measurements provide comprehensive jitter and eye-diagram analysis and jitter decomposition algorithms, enabling the discovery of signal integrity issues and their related sources in today's high-speed serial, digital, and communication system designs.


5-Series-MSO-Datasheet


The unique Jitter Summary provides a comprehensive view of your device's performance in a matter of seconds.

Power analysis

The 5 Series MSO has also integrated the optional 5-PWR/SUP5-PWR power analysis package into the oscilloscope's automatic measurement system to enable quick and repeatable analysis of power quality, harmonics, switching loss, safe operating area (SOA), modulation, ripple, magnetics measurements, efficiency, amplitude and timing measurements, and slew rate (dv/dt and di/dt).

Measurement automation optimizes the measurement quality and repeatability at the touch of a button, without the need for an external PC or complex software setup.


5-Series-MSO-Datasheet


The Power Analysis measurements display a variety of waveforms and plots.

Designed with your needs in mind

Connectivity

The 5 Series MSO contains a number of ports which you can use to connect the instrument to a network, directly to a PC, or to other test equipment.

  • Two USB 2.0 and one USB 3.0 host ports on the front and four more USB host ports (two 2.0, two 3.0) on the rear enable easy transfer of screen shots, instrument settings, and waveform data to a USB mass storage device. A USB mouse and keyboard can also be attached to USB host ports for instrument control and data entry.

  • The rear panel USB device port is useful for controlling the oscilloscope remotely from a PC.

  • The standard 10/100/1000BASE-T Ethernet port on the rear of the instrument enables easy connection to networks and provides LXI Core 2011 compatibility.

  • DVI-D, Display Port and VGA ports on the rear of the instrument lets you export the display to an external monitor or projector.


5-Series-MSO-Datasheet



5-Series-MSO-Datasheet


The I/O you need to connect the 5 Series MSO to the rest of your design environment.

Remote operation to improve collaboration

Want to collaborate with a design team on the other side of the world?

The embedded e*Scope®capability enables fast control of the oscilloscope over a network connection through a standard web browser. Simply enter the IP address or network name of the oscilloscope and a web page will be served to the browser. Control the oscilloscope remotely in the exact same ways you do in-person. Alternatively, you can use Microsoft Windows Remote Desktop™ capability to connect directly to your oscilloscope and control it remotely.

The industry-standard TekVISA™ protocol interface is included for using and enhancing Windows applications for data analysis and documentation. IVI-COM instrument drivers are included to enable easy communication with the oscilloscope using LAN or USBTMC connections from an external PC.


5-Series-MSO-Datasheet


e*Scope provides simple remote viewing and control using common web browsers.

Arbitrary/Function Generator (AFG)

The 5 Series MSO contains an optional integrated arbitrary/function generator, perfect for simulating sensor signals within a design or adding noise to signals to perform margin testing. The integrated function generator provides output of predefined waveforms up to 50 MHz for sine, square, pulse, ramp/triangle, DC, noise, sin(x)/x (Sinc), Gaussian, Lorentz, exponential rise/fall, Haversine and cardiac. The arbitrary waveform generator provides 128 k points of record for loading saved waveforms from an internal file location or a USB mass storage device. The 5 Series MSO is compatible with Tektronix' ArbExpress PC-based waveform creation and editing software, making creation of complex waveforms fast and easy.

Digital Voltmeter (DVM) and Trigger Frequency Counter

The 5 Series MSO contains an integrated 4-digit digital voltmeter (DVM) and 8-digit trigger frequency counter. Any of the analog inputs can be a source for the voltmeter, using the same probes that are already attached for general oscilloscope usage. The counter provides a very precise readout of the frequency of the trigger event on which you’re triggering. Both the DVM and trigger frequency counter are available for free and are activated when you register your product.

Enhanced security option

The optional 5-SEC enhanced security option enables password-protected enabling/disabling of all instrument I/O ports and firmware upgrades. In addition, option 5-SEC provides the highest level of security by ensuring that internal memory is clear of all setup and waveform data in compliance with National Industrial Security Program Operating Manual (NISPOM) DoD 5220.22-M, Chapter 8 requirements as well as Defense Security Service Manual for the Certification and Accreditation of Classified Systems under the NISPOM. This ensures you can confidently move the instrument out of a secure area.

Help when you need it

The 5 Series MSO includes several helpful resources so you can get your questions answered rapidly without having to find a manual or go to a website:

  • Graphical images and explanatory text are used in numerous menus to provide quick feature overviews.
  • All menus include a question mark icon in the upper right that takes you directly to the portion of the integrated help system that applies to that menu.
  • A short user interface tutorial is included in the Help menu for new users to come up to speed on the instrument in a matter of a few minutes.

5-Series-MSO-Datasheet


Integrated help answers your questions rapidly without having to find a manual or go to the internet.

Specifications

All specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.

Model overview
Oscilloscope
 MSO54 MSO56 MSO58
FlexChannel inputs
  Maximum analog channels
  Maximum digital channels (with optional logic probes) 32  48  64 
Bandwidth (calculated rise time) 350 MHz (1.15 ns), 500 MHz (800 ps), 1 GHz (400 ps), 2 GHz (225 ps)
DC Gain Accuracy 2 GHz models, 50 Ω: ±1.2%, (±2.0% at ≤ 1 mV/div), derated at 0.1 %/°C above 30°C 2 GHz models, 1 MΩ: ±1.0%, (±2.0% at ≤ 1 mV/div), derated at 0.1 %/°C above 30°C
< 2 GHz models, 50 Ω, 1 MΩ: ±1.0%, (±2.0% at ≤ 1 mV/div), derated at 0.1 %/°C above 30°C
ADC Resolution 12 bits
Vertical Resolution 8 bits @ 6.25 GS/s
12 bits @ 3.125 GS/s
13 bits @ 1.25 GS/s (High Res)
14 bits @ 625 MS/s (High Res)
15 bits @ 312.5 MS/s (High Res)
16 bits @ ≤125 MS/s (High Res)
Sample Rate 6.25 GS/s on all analog / digital channels (160 ps resolution)
Record Length (std.) 62.5 Mpoints on all analog / digital channels
Record Length (opt.) 125 Mpoints on all analog / digital channels
Waveform Capture Rate >500,000 wfms/s
Arbitrary/Function Generator (opt.) 13 predefined waveform types with up to 50 MHz output
DVM 4-digit DVM (free with product registration)
Trigger Frequency Counter 8-digit frequency counter (free with product registration)
Vertical system - analog channels
Bandwidth selections
20 MHz, 250 MHz, and the full bandwidth value for your model
Input coupling
DC, AC
Input impedance

50 Ω ± 1%

1 MΩ ± 1% with 14.5 pF ± 1.5 pF (2 GHz models)

1 MΩ ± 1% with 13.0 pF ± 1.5 pF (< 2 GHz models)

Input sensitivity range
1 MΩ
500 µV/div to 10 V/div in a 1-2-5 sequence
50 Ω
500 µV/div to 1 V/div in a 1-2-5 sequence
Note: 500 μV/div is a 2X digital zoom of 1 mV/div.
Maximum input voltage

50 Ω: 5 VRMS, with peaks ≤ ±20 V (DF ≤ 6.25%)

1 MΩ: 300 VRMS, CAT II

For 1 MΩ, derate at 20 dB/decade from 4.5 MHz to 45 MHz;

Derate 14 dB/decade from 45 MHz to 450 MHz;

> 450 MHz, 5.5 VRMS

Effective bits (ENOB), typical
2 GHz models, High Res mode, 50 Ω, 10 MHz input with 90% full screen
Bandwidth ENOB
1 GHz 7.0 
250 MHz 7.8 
20 MHz 8.7 

 

< 2 GHz models, High Res mode, 50 Ω, 10 MHz input with 90% full screen
Bandwidth ENOB
1 GHz 7.6 
500 MHz 7.9 
350 MHz 8.2 
250 MHz 8.1 
20 MHz 8.9 
Random noise, RMS, typical
2 GHz models, High Res mode (RMS)
2 GHz models50 Ω1 MΩ
V/div1 GHz250 MHz20 MHz500 MHz250 MHz20 MHz
≤1 mV/div 166.8 μV 66.8 μV 27.2 μV 208 μV 117 μV 64.6 μV
2 mV/div 296.9 μV 77.5 μV 28.5 μV 224 μV 117 μV 66.7 μV
5 mV/div 3202 μV 108 μV 37.4 μV 238 μV 133 μV 68.7 μV
10 mV/div 275 μV 147 μV 56.1 μV 277 μV 173 μV 83.6 μV
20 mV/div 469 μV 251 μV 106 μV 416 μV 278 μV 125 μV
50 mV/div 1.10 mV 589 μV 253 μV 916 μV 620 μV 271 μV
100 mV/div 2.75 mV 1.47 mV 602 μV 1.90 mV 1.36 mV 603 μV
1 V/div 18.4 mV 10.8 mV 4.68 mV 20.3 mV 14.6 mV 6.54 mV

 

1 GHz, 500 MHz, 350 MHz models, High Res mode (RMS)
< 2 GHz models50 Ω1 MΩ
V/div1 GHz500 MHz350 MHz250 MHz20 MHz500 MHz350 MHz250 MHz20 MHz
≤1 mV/div 4254 μV 198 μV 141 μV 118 μV 70.0 μV 189 μV 143 μV 118 μV 64.8 μV
2 mV/div 255 μV 198 μV 143 μV 121 μV 70.4 μV 194 μV 145 μV 121 μV 66.0 μV
5 mV/div 262 μV 202 μV 150 μV 133 μV 72.8 μV 196 μV 152 μV 130 μV 69.6 μV
10 mV/div 283 μV 218 μV 169 μV 158 μV 79.8 μV 212 μV 167 μV 154 μV 78.2 μV
20 mV/div 357 μV 273 μV 222 μV 223 μV 102 μV 269 μV 214 μV 223 μV 104 μV
50 mV/div 677 μV 516 μV 436 μV 460 μV 196 μV 490 μV 410 μV 480 μV 207 μV
100 mV/div 1.61 mV 1.23 mV 1.02 mV 1.04 mV 464 μV 1.16 mV 964 μV 1.05 mV 475 μV
1 V/div 13.0 mV 9.88 mV 8.41 mV 8.94 mV 3.77 mV 13.6 mV 10.6 mV 11.1 mV 5.47 mV

 

1Bandwidth at ≤ 1 mV/div is limited to 175 MHz in 50 Ω.

2Bandwidth at 2 mV/div is limited to 350 MHz in 50 Ω.

3Bandwidth at 5 mV/div is limited to 1.5 GHz in 50 Ω.

4Bandwidth at 500 μV/div is limited to 250 MHz in 50 Ω.

5Bandwidth at 1 mV/div is limited to 175 MHz in 50 Ω.

6Bandwidth at 2 mV/div is limited to 350 MHz in 50 Ω.

7Bandwidth at 5 mV/div is limited to 1.5 GHz in 50 Ω.

Position range
±5 divisions
Offset ranges, maximum
2 GHz models
Volts/div Setting Maximum offset range, 50 Ω Input
500 µV/div - 50 mV/div ±1 V
51 mV/div - 99 mV/div ± (-10 * (Volts/div Setting) + 1.5 V)
100 mV/div - 500 mV/div ±10 V
501 mV/div - 1 V/div ± (-10 * (Volts/div Setting) + 15 V)

 

Volts/div Setting Maximum offset range, 1 MΩ Input
500 µV/div - 63 mV/div ±1 V
64 mV/div - 999 mV/div ±10 V
1 V/div - 10 V/div ±100 V

 

≤ 1 GHz models
Volts/div Setting Maximum offset range
50 Ω Input 1 MΩ Input
500 µV/div - 63 mV/div ±1 V ±1 V
64 mV/div - 999 mV/div ±10 V ±10 V
1 V/div - 10 V/div ±10 V ±100 V
Offset accuracy

±(0.005 X | offset - position | + DC balance)

Crosstalk (channel isolation), typical

≥ 200:1 up to the rated bandwidth for any two channels having equal Volts/div settings

DC balance

0.1 div with DC-50 Ω oscilloscope input impedance (50 Ω BNC terminated)

0.2 div at 1 mV/div with DC-50 Ω oscilloscope input impedance (50 Ω BNC terminated)

0.4 div at 500 μV/div with DC-50 Ω oscilloscope input impedance (50 Ω BNC terminated)

0.2 div with DC-1 MΩ oscilloscope input impedance (50 Ω BNC terminated)

0.4 div at 500 µV/div with DC-1 MΩ scope input impedance (50 Ω BNC terminated)

5-Series-MSO-Datasheet

Note: 500 µV/div is a 2X digital zoom of 1 mV/div. As such, it is guaranteed by testing the 1 mV/div setting.
Vertical system - digital channels
Number of channels
8 digital inputs (D7-D0) per installed TLP058 (traded off for one analog channel)
Vertical resolution
1 bit
Maximum input toggle rate

500 MHz

Minimum detectable pulse width, typical

1 ns

Thresholds
One threshold per digital channel
Threshold range
±40 V
Threshold resolution
10 mV
Threshold accuracy

± [100 mV + 3% of threshold setting after calibration]

Input hysteresis, typical
100 mV at the probe tip
Input dynamic range, typical
30 Vpp for Fin ≤ 200 MHz, 10 Vpp for Fin > 200 MHz
Absolute maximum input voltage, typical

±42 V peak

Minimum voltage swing, typical

400 mV peak-to-peak

Input impedance, typical
100 kΩ
Probe loading, typical
2 pF
Horizontal system
Time base range
200 ps/div to 1,000 s/div
Sample rate range

1.5625 S/s to 6.25 GS/s (real time)

12.5 GS/s to 500 GS/s (interpolated)

Record length range
Standard
1 kpoints to 62.5 Mpoints in single sample increments
Option 5-RL-125M
125 Mpoints
Maximum duration at highest sample rate
10 ms (std.) or 20 ms (opt.)
Time base delay time range
-10 divisions to 5,000 s
Deskew range

-125 ns to +125 ns with a resolution of 40 ps

Timebase accuracy

±2.5 x 10-6over any ≥1 ms time interval

Description Specification
Factory Tolerance ±5.0 x10-7. At calibration, 23 °C ambient, over any ≥1 ms interval
Temperature stability ±5.0 x10-7. Tested at operating temperatures
Crystal aging, typical ±1.5 x 10-6. Frequency tolerance change at 25 °C over a period of 1 year
Delta-time measurement accuracy

equation-27239

 

equation-27239

 (assume edge shape that results from Gaussian filter response)

The formula to calculate delta-time measurement accuracy (DTA) for a given instrument setting and input signal assumes insignificant signal content above Nyquist frequency, where:

SR 1= Slew Rate (1stEdge) around 1stpoint in measurement

SR 2= Slew Rate (2ndEdge) around 2ndpoint in measurement

N = input-referred guaranteed noise limit (volts rms)

TBA = timebase accuracy or Reference Frequency Error

t p= delta-time measurement duration (sec)

Aperture uncertainty

≤ 0.450 ps + (1 * 10-11* Measurement Duration)RMS, for measurements having duration ≤ 100 ms

Delay between analog channels, full bandwidth, typical

≤ 100 ps for any two channels with input impedance set to 50 Ω, DC coupling with equal Volts/div or above 10 mV/div

Delay between analog and digital FlexChannels, typical
< 1 ns when using a TLP058 and a TPP1000/TPP0500B with no bandwidth limits applied
Delay between any two digital FlexChannels, typical
320 ps
Delay between any two bits of a digital FlexChannel, typical
160 ps
Trigger system
Trigger modes
Auto, Normal, and Single
Trigger coupling

DC, AC, HF reject (attenuates > 50 kHz), LF reject (attenuates < 50 kHz), noise reject (reduces sensitivity)

Trigger holdoff range
0 ns to 20 seconds
Trigger jitter, typical

≤ 5 psRMSfor sample mode and edge-type trigger

≤ 7 psRMSfor edge-type trigger and FastAcq mode

≤ 40 psRMSfor non edge-type trigger modes

Edge-type trigger sensitivity, DC coupled, typical
Path Range Specification
1 MΩ path (all models) 0.5 mV/div to 0.99 mV/div 4.5 div from DC to instrument bandwidth
≥ 1 mV/div The greater of 5 mV or 0.7 div from DC to lesser of 500 MHz or instrument BW, & 6 mV or 0.8 div from > 500 MHz to instrument bandwidth
50 Ω path, 1 GHz, 500 MHz, 350 MHz models   The greater of 5.6 mV or 0.7 div from DC to the lesser of 500 MHz or instrument BW, & 7 mV or 0.8 div from > 500 MHz to instrument bandwidth
50 Ω path, 2 GHz models 0.5 mV/div to 0.99 mV/div 3.0 div from DC to instrument bandwidth
1 mV/div to 9.98 mV/div 1.5 divisions from DC to instrument bandwidth
≥ 10 mV/div < 1.0 division from DC to instrument bandwidth
Line Fixed
Trigger level ranges
Source Range
Any Channel ±5 divs from center of screen
Line Fixed at about 50% of line voltage

This specification applies to logic and pulse thresholds.

Trigger frequency counter

8-digits (free with product registration)

Trigger types
Edge:
Positive, negative, or either slope on any channel. Coupling includes DC, AC, noise reject, HF reject, and LF reject
Pulse Width:

Trigger on width of positive or negative pulses. Event can be time- or logic-qualified

Timeout:
Trigger on an event which remains high, low, or either, for a specified time period. Event can be logic-qualified
Runt:
Trigger on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again. Event can be time- or logic-qualified
Window:
Trigger on an event that enters, exits, stays inside or stays outside of a window defined by two user-adjustable thresholds. Event can be time- or logic-qualified
Logic:
Trigger when logic pattern goes true, goes false, or occurs coincident with a clock edge. Pattern (AND, OR, NAND, NOR) specified for all input channels defined as high, low, or don't care. Logic pattern going true can be time-qualified
Setup & Hold:
Trigger on violations of both setup time and hold time between clock and data present on any input channels
Rise / Fall Time:
Trigger on pulse edge rates that are faster or slower than specified. Slope may be positive, negative, or either. Event can be logic-qualified
Sequence:

Trigger on B event X time or N events after A trigger with a reset on C event. In general, A and B trigger events can be set to any trigger type with a few exceptions: logic qualification is not supported, if A event or B event is set to Setup & Hold, then the other must be set to Edge, and Ethernet and High Speed USB (480 Mbps) are not supported

Parallel Bus:
Trigger on a parallel bus data value. Parallel bus can be from 1 to 64 bits (from the digital and analog channels) in size. Binary and Hex radices are supported
I2C Bus (option 5-SREMBD):
Trigger on Start, Repeated Start, Stop, Missing ACK, Address (7 or 10 bit), Data, or Address and Data on I2C buses up to 10 Mb/s
SPI Bus (option 5-SREMBD):
Trigger on Slave Select, Idle Time, or Data (1-16 words) on SPI buses up to 20 Mb/s
RS-232/422/485/UART Bus (option 5-SRCOMP):
Trigger on Start Bit, End of Packet, Data, and Parity Error up to 15 Mb/s
CAN Bus (option 5-SRAUTO):
Trigger on Start of Frame, Type of Frame (Data, Remote, Error, or Overload), Identifier, Data, Identifier and Data, End Of Frame, Missing Ack, and Bit Stuff Error on CAN buses up to 1 Mb/s
CAN FD Bus (option 5-SRAUTO):
Trigger on Start of Frame, Type of Frame (Data, Remote, Error, or Overload), Identifier (Standard or Extended), Data (1-8 bytes), Identifier and Data, End Of Frame, Error (Missing Ack, Bit Stuffing Error, FD Form Error, Any Error) on CAN FD buses up to 16 Mb/s
LIN Bus (option 5-SRAUTO):
Trigger on Sync, Identifier, Data, Identifier and Data, Wakeup Frame, Sleep Frame, and Error on LIN buses up to 1 Mb/s
FlexRay Bus (Option 5-SRAUTO):
Trigger on Start of Frame, Indicator Bits (Normal, Payload, Null, Sync, Startup), Frame ID, Cycle Count, Header Fields (Indicator Bits, Identifier, Payload Length, Header CRC, and Cycle Count), Identifier, Data, Identifier and Data, End Of Frame, and Errors on FlexRay buses up to 10 Mb/s
SENT Bus (Option 5-SRAUTOSEN)
Trigger on Start of Packet, Fast Channel Status, Data, and CRC Error
USB 2.0 LS/FS/HS Bus (option 5-SRUSB2):
Trigger on Sync, Reset, Suspend, Resume, End of Packet, Token (Address) Packet, Data Packet, Handshake Packet, Special Packet, Error on USB buses up to 480 Mb/s
Ethernet Bus (option 5-SRENET):
Trigger on Start of Frame, MAC Addresses, MAC Q-tag, MAC Length/Type, MAC Data, IP Header, TCP Header, TCP/IPV4 Data, End of Packet, and FCS (CRC) Error on 10BASE-T and 100BASE-TX buses
Audio (I2S, LJ, RJ, TDM) Bus (option 5-SRAUDIO):
Trigger on Word Select, Frame Sync, or Data. Maximum data rate for I2S/LJ/RJ is 12.5 Mb/s. Maximum data rate for TDM is 25 Mb/s
MIL-STD-1553 Bus (option 5-SRAERO):
Trigger on Sync, Command (Transmit/Receive Bit, Parity, Subaddress / Mode, Word Count / Mode Count, RT Address), Status (Parity, Message Error, Instrumentation, Service Request, Broadcast Command Received, Busy, Subsystem Flag, Dynamic Bus Control Acceptance, Terminal Flag), Data, Time (RT/IMG), and Error (Parity Error, Sync Error, Manchester Error, Non-contiguous Data) on MIL-STD-1553 buses
ARINC 429 Bus (option 5-SRAERO):
Trigger on Word Start, Label, Data, Label and Data, Word End, and Error (Any Error, Parity Error, Word Error, Gap Error) on ARINC 429 buses up to 1 Mb/s
Acquisition system
Sample
Acquires sampled values
Peak Detect
Captures glitches as narrow as 640 ps at all sweep speeds
Averaging
From 2 to 10,240 waveforms
Envelope
Min-max envelope reflecting Peak Detect data over multiple acquisitions
High Res

Applies a unique Finite Impulse Response (FIR) filter for each sample rate that maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the oscilloscope amplifiers and ADC above the usable bandwidth for the selected sample rate.

High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at ≤ 125 MS/s sample rates.

FastAcq®

FastAcq optimizes the instrument for analysis of dynamic signals and capture of infrequent events by capturing >500,000 wfms/s.

Roll mode

Scrolls sequential waveform points across the display in a right-to-left rolling motion, at timebase speeds of 40 ms/div and slower, when in Auto trigger mode.

FastFrame™

Acquisition memory divided into segments.

Maximum trigger rate >5,000,000 waveforms per second

Minimum frame size = 50 points

Maximum Number of Frames: For frame size ≥ 1,000 points, maximum number of frames = record length / frame size. For 50 point frames, maximum number of frames = 950,000 

Waveform measurements
Cursor types
Waveform, V Bars, H Bars, and V&H Bars
DC voltage measurement accuracy, Average acquisition mode
Measurement Type DC Accuracy (In Volts)
Average of ≥ 16 waveforms ±((DC Gain Accuracy) * |reading - (offset - position)| + Offset Accuracy + 0.1 * V/div setting)
Delta volts between any two averages of ≥ 16 waveforms acquired with the same oscilloscope setup and ambient conditions ±(DC Gain Accuracy * |reading| + 0.05 div)
Automatic measurements

36 of which an unlimited number can be displayed at once as either individual measurement badges or collectively in a measurement results table

Amplitude measurements

Amplitude, Maximum, Minimum, Peak-to-Peak, Positive Overshoot, Negative Overshoot, Mean, RMS, AC RMS, Top, Base, and Area

Timing measurements

Period, Frequency, Unit Interval, Data Rate, Positive Pulse Width, Negative Pulse Width, Skew, Delay, Rise Time, Fall Time, Phase, Rising Slew Rate, Falling Slew Rate, Burst Width, Positive Duty Cycle, Negative Duty Cycle, Time Outside Level, Setup Time, Hold Time, Duration N-Periods, High Time, and Low Time

Jitter measurements (standard)
TIE and Phase Noise
Measurement statistics
Mean, Standard Deviation, Maximum, Minimum, and Population. Statistics are available on both the current acquisition and all acquisitions
Reference levels
User-definable reference levels for automatic measurements can be specified in either percent or units. Reference levels can be set to global for all measurements, per source or unique for each measurement
Gating
Isolate the specific occurrence within an acquisition to take measurements on, using either the screen or waveform cursors. Gating can be set to global for all measurements or unique for each measurement
Measurement plots
Time Trend, Histogram, and Spectrum plots are available for all standard measurements
Jitter analysis (option 5-DJA, SUP5-DJA) adds the following:
Measurements

Jitter Summary, [email protected], RJ- δδ, DJ- δδ, PJ, RJ, DJ, DDJ, DCD, SRJ, J2, J9, NPJ, F/2, F/4, F/8, Eye Height, Eye [email protected], Eye Width, Eye [email protected], Eye High, Eye Low, Q-Factor, Bit High, Bit Low, Bit Amplitude, DC Common Mode, AC Common Mode (Pk-Pk), Differential Crossover, T/nT Ratio, SSC Freq Dev, SSC Modulation Rate

Measurement Plots
Eye Diagram and Jitter Bathtub
Power analysis (option 5-PWR, SUP5-PWR) adds the following:
Measurements

Input Analysis (Frequency, VRMS, IRMS, voltage and current Crest Factors, True Power, Apparent Power, Reactive Power, Power Factor, Phase Angle, and Harmonics), Amplitude Analysis (Cycle Amplitude, Cycle Top, Cycle Base, Cycle Maximum, Cycle Minimum, Cycle Peak-to-Peak), Timing Analysis (Period, Frequency, Negative Duty Cycle, Positive Duty Cycle, Negative Pulse Width, Positive Pulse Width), Switching Analysis (Switching Loss, dv/dt, di/dt, Safe Operating Area, and RDSon), Magnetic Analysis (Inductance, I vs. Intg(V), Magnetic Loss, Magnetic Property), and Output Analysis (Line Ripple, Switching Ripple, and Efficiency)

Measurement Plots
Harmonics Bar Graph, Switching Loss Trajectory Plot, and Safe Operating Area
Waveform math
Number of math waveforms
Unlimited
Arithmetic
Add, subtract, multiply, and divide waveforms and scalars
Algebraic expressions
Define extensive algebraic expressions including waveforms, scalars, user-adjustable variables, and results of parametric measurements. Perform math on math using complex equations. For example (Integral (CH1 - Mean(CH1)) X 1.414 X VAR1)
Math functions
Invert, Integrate, Differentiate, Square Root, Exponential, Log 10, Log e, Abs, Ceiling, Floor, Min, Max, Degrees, Radians, Sin, Cos, Tan, ASin, ACos, and ATan
Relational
Boolean result of comparison >, <, ≥, ≤, =, and ≠
Logic
AND, OR, NAND, NOR, XOR, and EQV
Filtering function
User-definable filters. Users specify a file containing the coefficients of the filter
FFT functions
Spectral Magnitude and Phase, and Real and Imaginary Spectra
FFT vertical units

Magnitude: Linear and Log (dBm)

Phase: Degrees, Radians, and Group Delay

FFT window functions
Hanning, Rectangular, Hamming, Blackman-Harris, Flattop2, Gaussian, Kaiser-Bessel, and TekExp
Search
Number of searches
Unlimited
Search types

Search through long records to find all occurrences of user specified criteria including edges, pulse widths, timeouts, runt pulses, window violations, logic patterns, setup & hold violations, rise/fall times, and bus protocol events. Search results can be viewed in the Waveform View or in the Results table.

Display
Display type
15.6 in. (395 mm) liquid-crystal TFT color display
Display resolution
1,920 horizontal × 1,080 vertical pixels (High Definition)
Display modes

Overlay: traditional oscilloscope display where traces overlay each other

Stacked: display mode where each waveform is placed in its own slice and can take advantage of the full ADC range while still being visually separated from other waveforms

Zoom
Horizontal and vertical zooming is supported in all waveform and plot views.
Interpolation
Sin(x)/x and Linear
Waveform styles
Vectors, dots, variable persistence, and infinite persistence
Graticules
Grid, Time, Full, and None
Color palettes
Normal and inverted
Format
YT, XY, and XYZ
Arbitrary/Function Generator (optional)
Function types
Arbitrary, sine, square, pulse, ramp, triangle, DC level, Gaussian, Lorentz, exponential rise/fall, sin(x)/x, random noise, Haversine, Cardiac
Sine waveform
Frequency range
0.1 Hz to 50 MHz
Frequency setting resolution
0.1 Hz
Frequency accuracy
130 ppm (frequency ≤ 10 kHz), 50 ppm (frequency > 10 kHz)
Amplitude range
20 mVpp to 5 Vpp into Hi-Z; 10 mVpp to 2.5 Vpp into 50 Ω
Amplitude flatness, typical

±0.5 dB at 1 kHz

±1.5 dB at 1 kHz for < 20 mVppamplitudes

Total harmonic distortion, typical

1% for amplitude ≥ 200 mVppinto 50 Ω load

2.5% for amplitude > 50 mV AND < 200 mVppinto 50 Ω load

Spurious free dynamic range, typical

40 dB (Vpp≥ 0.1 V); 30 dB (Vpp≥ 0.02 V), 50 Ω load

Square and pulse waveform
Frequency range
0.1 Hz to 25 MHz
Frequency setting resolution
0.1 Hz
Frequency accuracy
130 ppm (frequency ≤ 10 kHz), 50 ppm (frequency > 10 kHz)
Amplitude range
20 mVpp to 5 Vpp into Hi-Z; 10 mVpp to 2.5 Vpp into 50 Ω
Duty cycle range
10% - 90% or 10 ns minimum pulse, whichever is larger

Minimum pulse time applies to both on and off time, so maximum duty cycle will reduce at higher frequencies to maintain 10 ns off time

Duty cycle resolution
0.1%
Minimum pulse width, typical
10 ns. This is the minimum time for either on or off duration.
Rise/Fall time, typical
5 ns, 10% - 90%
Pulse width resolution
100 ps
Overshoot, typical
< 6% for signal steps greater than 100 mVpp

This applies to overshoot of the positive-going transition (+overshoot) and of the negative-going (-overshoot) transition

Asymmetry, typical
±1% ±5 ns, at 50% duty cycle
Jitter, typical
< 60 ps TIERMS, ≥ 100 mVpp amplitude, 40%-60% duty cycle
Ramp and triangle waveform
Frequency range
0.1 Hz to 500 kHz
Frequency setting resolution
0.1 Hz
Frequency accuracy
130 ppm (frequency ≤ 10 kHz), 50 ppm (frequency > 10 kHz)
Amplitude range
20 mVpp to 5 Vpp into Hi-Z; 10 mVpp to 2.5 Vpp into 50 Ω
Variable symmetry
0% - 100%
Symmetry resolution
0.1%
DC level range

±2.5 V into Hi-Z

±1.25 V into 50 Ω

Random noise amplitude range

20 mVppto 5 Vppinto Hi-Z

10 mVppto 2.5 Vppinto 50 Ω

Sin(x)/x
Maximum frequency
2 MHz
Gaussian pulse, Haversine, and Lorentz pulse
Maximum frequency
5 MHz
Lorentz pulse
Frequency range
0.1 Hz to 5 MHz
Amplitude range
20 mVpp to 2.4 Vpp into Hi-Z

10 mVppto 1.2 Vppinto 50 Ω

Cardiac
Frequency range
0.1 Hz to 500 kHz
Amplitude range
20 mVpp to 5 Vpp into Hi-Z

10 mVppto 2.5 Vppinto 50 Ω

Arbitrary
Memory depth
1 to 128 k
Amplitude range
20 mVpp to 5 Vpp into Hi-Z

10 mVppto 2.5 Vppinto 50 Ω

Repetition rate
0.1 Hz to 25 MHz
Sample rate
250 MS/s
Signal amplitude accuracy
±[ (1.5% of peak-to-peak amplitude setting) + (1.5% of absolute DC offset setting) + 1 mV ] (frequency = 1 kHz)
Signal amplitude resolution

1 mV (Hi-Z)

500 μV (50 Ω)

Sine and ramp frequency accuracy

1.3 x 10-4(frequency ≤10 kHz)

5.0 x 10-5(frequency >10 kHz)

DC offset range

±2.5 V into Hi-Z

±1.25 V into 50 Ω

DC offset resolution

1 mV (Hi-Z)

500 μV (50 Ω)

DC offset accuracy

±[ (1.5% of absolute offset voltage setting) + 1 mV ]

Add 3 mV of uncertainty per 10 °C change from 25 °C ambient

Digital volt meter (DVM)
Measurement types

DC, ACRMS+DC, ACRMS

Voltage resolution
4 digits
Voltage accuracy
DC:

±(1.5% * |reading - offset - position|) + (0.5% * |(offset - position)|) + (0.1 * Volts/div))

De-rated at 0.100%/°C of |reading - offset - position| above 30 °C

Signal ± 5 divisions from screen center

AC:

± 2% (40 Hz to 1 kHz) with no harmonic content outside 40 Hz to 1 kHz range

AC, typical: ± 2% (20 Hz to 10 kHz)

For AC measurements, the input channel vertical settings must allow the VPPinput signal to cover between 4 and 10 divisions and must be fully visible on the screen

Trigger frequency counter
Accuracy

±(1 count + time base accuracy * input frequency)

The signal must be at least 8 mVppor 2 div, whichever is greater.

Maximum input frequency

Maximum bandwidth of the analog channel

The signal must be at least 8 mVppor 2 div, whichever is greater.

Resolution

8-digits

Processor system
Host processor

Intel i5-4400E, 2.7 GHz, 64-bit, dual core processor

Internal storage

≥ 80 GB. Form factor is an 80 mm m.2 card with a SATA-3 interface

Operating system
Closed Linux

Instrument with option 5-WIN installed: Microsoft Windows 10 1

1Option 5-WIN is not available for MSO58LP instrument.

Solid State Drive (SSD) with Microsoft Windows 10 OS (option 5-WIN)

≥ 480 GB SSD. Form factor is a 2.5-inch SSD with a SATA-3 interface. This drive is customer installable and includes the Microsoft Windows 10 Enterprise IoT 2016 LTSB (64-bit) operating system

Input-Output ports
DisplayPort connector

A 20-pin DisplayPort connector

DVI connector

A 29-pin DVI-D connector; connect to show the oscilloscope display on an external monitor or projector

VGA

DB-15 female connector; connect to show the oscilloscope display on an external monitor or projector

Probe compensator signal, typical

Connection:
Connectors are located on the lower right-hand side of the instrument
Amplitude:
0 to 2.5 V
Frequency:
1 kHz
Source impedance:
1 kΩ
External reference input
Time-base system can phase lock to an external 10 MHz reference (±4 ppm)
USB interface (Host, Device ports)

Front panel USB Host ports: Two USB 2.0 High Speed ports, one USB 3.0 Super Speed port

Rear panel USB Host ports: Two USB 2.0 High Speed ports, two USB 3.0 Super Speed ports

Rear panel USB Device port: One USB 3.0 Super Speed Device port providing USBTMC support

Ethernet interface
10/100/1000 Mb/s
Auxiliary output

Rear-panel BNC connector. Output can be configured to provide a positive or negative pulse out when the oscilloscope triggers, the internal oscilloscope reference clock out, or an AFG sync pulse

Characteristic Limits
Vout (HI) ≥ 2.5 V open circuit; ≥ 1.0 V into a 50 Ω load to ground
Vout (LO) ≤ 0.7 V into a load of ≤ 4 mA; ≤0.25 V into a 50 Ω load to ground
Kensington-style lock
Rear-panel security slot connects to standard Kensington-style lock
LXI

Class: LXI Core 2011 

Version: 1.4 

Power source
Power
Power consumption

400 Watts maximum

Source voltage
100 - 240 V ±10% at 50 Hz to 60 Hz ±10%

115 V ±10% at 400 Hz ±10%

Physical characteristics
Dimensions

Height: 12.2 in (309 mm), feet folded in, handle to back

Height: 14.6 in (371 mm) feet folded in, handle up

Width: 17.9 in (454 mm) from handle hub to handle hub

Depth: 8.0 in (205 mm) from back of feet to front of knobs, handle up

Depth: 11.7 in (297.2 mm) feet folded in, handle to the back

Weight

< 25 lbs (11.4 kg)

Cooling
The clearance requirement for adequate cooling is 2.0 in (50.8 mm) on the right side of the instrument (when viewed from the front) and on the rear of the instrument
Rackmount configuration
7U
Environmental specifications
Temperature
Operating
+0 °C to +50 °C (32 °F to 122 °F)
Non-operating

-20 °C to +60 °C (-4 °F to 140 °F)

Humidity
Operating

5% to 90% relative humidity (% RH) at up to +40 °C

5% to 55% RH above +40 °C up to +50 °C, non-condensing, and as limited by a maximum wet-bulb temperature of +39 °C

Non-operating

5% to 90% relative humidity (% RH) at up to +40 °C

5% to 39% RH above +40 °C up to +50 °C, non-condensing, and as limited by a maximum wet-bulb temperature of +39 °C

Altitude
Operating
Up to 3,000 meters (9,843 feet)
Non-operating
Up to 12,000 meters (39,370 feet)
EMC, Environmental, and Safety
Regulatory

CE marked for the European Union and UL approved for the USA and Canada

Software
Software
IVI driver

Provides a standard instrument programming interface for common applications such as LabVIEW, LabWindows/CVI, MicrosoftNET, and MATLAB.

e*Scope®

Enables control of the oscilloscope over a network connection through a standard web browser. Simply enter the IP address or network name of the oscilloscope and a web page will be served to the browser. Transfer and save settings, waveforms, measurements, and screen images or make live control changes to settings on the oscilloscope directly from the web browser.

LXI Web interface

Connect to the oscilloscope through a standard Web browser by simply entering the oscilloscope's IP address or network name in the address bar of the browser. The Web interface enables viewing of instrument status and configuration, status and modification of network settings, and instrument control through the e*Scope web-based remote control. All web interaction conforms to LXI Core specification, version 1.4.

Ordering information

Use the following steps to select the appropriate instrument and options for your measurement needs.

Step 1
Start by selecting a 5 Series MSO model based on the number of FlexChannel inputs you need. Each FlexChannel input supports 1 analog or 8 digital input signals, interchangeably.
Model Number of FlexChannels
MSO54
MSO56
MSO58
Each instrument includes
  • One passive analog probe per FlexChannel:
    • TPP0500B 500 MHz probes with 350 MHz or 500 MHz bandwidth models
    • TPP1000 1 GHz probes with 1 GHz or 2 GHz bandwidth models
  • Installation and safety manual (translated in English, Japanese, Simplified Chinese)
  • Integrated online help
  • Front cover with integrated accessory pouch
  • Mouse
  • Power cord
  • Calibration certificate documenting traceability to National Metrology Institute(s) and ISO9001/ISO17025 quality system registration
  • Three-year warranty covering all parts and labor on the instrument. One-year warranty covering all parts and labor on included probes
Step 2
Configure your oscilloscope by selecting the analog channel bandwidth you need
Choose the bandwidth you need today by choosing one of these bandwidth options. You can upgrade it later by purchasing an upgrade kit.
Bandwidth Option Bandwidth
5-BW-350  350 MHz
5-BW-500  500 MHz
5-BW-1000  1 GHz
5-BW-2000  2 GHz
Step 3
Add instrument functionality
Instrument functionality can be ordered with the instrument or later as an upgrade kit.
Instrument Option Built-in Functionality
5-RL-125MExtend record length to 125 Mpoints/channel
5-WIN Add removable SSD with Microsoft Windows 10 operating system license
5-AFGAdd Arbitrary / Function Generator
5-SEC1Add Enhanced security for instrument declassification and password protected enabling and disabling of all USB ports and firmware upgrade.

1This option must be purchased at the same time as the instrument. Not available as an upgrade.

Step 4
Add optional serial bus triggering, decode, and search capabilities
Choose the serial support you need today by choosing from these serial analysis options. You can upgrade later by purchasing an upgrade kit.
Instrument Option Serial Buses Supported
5-SRAEROAerospace (MIL-STD-1553, ARINC 429)
5-SRAUDIOAudio (I2S, LJ, RJ, TDM)
5-SRAUTOAutomotive (CAN, CAN FD, LIN, FlexRay)
5-SRAUTOSENAutomotive sensor (SENT)
5-SRCOMPComputer (RS-232/422/485/UART)
5-SREMBDEmbedded (I2C, SPI)
5-SRENETEthernet (10BASE-T, 100BASE-TX)
5-SRUSB2USB (USB2.0 LS, FS, HS ) 1

Differential serial bus? Be sure to checkAdd analog probes and adapters for differential probes.

1USB high-speed supported only on models with ≥1 GHz bandwidth

Step 5
Add optional serial bus compliance testing
Choose the serial compliance testing packages you need today by choosing from these options. You can upgrade later by purchasing an upgrade kit.
Instrument Option Serial Buses Supported
5-CMAUTOENAutomotive Ethernet (100BASE-T1). Requires option 5-WIN (SSD with Microsoft Windows 10 operating system)
Step 6
Add optional analysis capabilities
Instrument Option Advanced Analysis
5-DJAAdvanced Jitter and Eye Analysis
5-PWRPower Measurement and Analysis
5-PS21Power Solution Bundle (5-PWR, THDP0200, TCP0030A, 067-1686-xx deskew fixture)

1This option must be purchased at the same time as the instrument. Not available as an upgrade.

Step 7
Add digital probes
Each FlexChannel input can be configured as eight digital channels simply by connecting a TLP058 logic probe to a FlexChannel input. You can order TLP058 probes with the instrument or separately.
For this instrument Order To add
MSO54 1 to 4 TLP058 Probes 8 to 32 digital channels
MSO56 1 to 6 TLP058 Probes 8 to 48 digital channels
MSO58 1 to 8 TLP058 Probes 8 to 64 digital channels
Step 8
Add analog probes and adapters
Add additional recommended probes and adapters
Recommended Probe / Adapter Description
TAP1500 1.5 GHz TekVPI® active single-ended voltage probe, ±8 V differential input voltage
TAP2500 2.5 GHz TekVPI® active single-ended voltage probe, ±4 V differential input voltage
TCP0030A 30 A AC/DC TekVPI® current probe, 120 MHz BW
TCP0020 20 A AC/DC TekVPI® current probe, 50 MHz BW
TCP0150 150 A AC/DC TekVPI® current probe, 20 MHz BW
TRCP0300 30 MHz AC current probe, 250 mA to 300 A
TRCP0600 30 MHz AC current probe, 500 mA to 600 A
TRCP3000 16 MHz AC current probe, 500 mA to 3000 A
TDP0500 500 MHz TekVPI® differential voltage probe, ±42 V differential input voltage
TDP1000 1 GHz TekVPI® differential voltage probe, ±42 V differential input voltage
TDP1500 1.5 GHz TekVPI® differential voltage probe, ±8.5 V differential input voltage
TDP3500 3.5 GHz TekVPI® differential voltage probe, ±2 V differential input voltage
THDP0100 ±6 kV, 100 MHz TekVPI® high-voltage differential probe
THDP0200 ±1.5 kV, 200 MHz TekVPI® high-voltage differential probe
TMDP0200 ±750 V, 200 MHz TekVPI® high-voltage differential probe
TIVH02 Isolated Probe; 200 MHz, ±2500 V, TekVPI, 3 Meter Cable
TIVH02L Isolated Probe; 200 MHz, ±2500 V, TekVPI, 10 Meter Cable
TIVH05 Isolated Probe; 500 MHz, ±2500 V, TekVPI, 3 Meter Cable
TIVH05L Isolated Probe; 500 MHz, ±2500 V, TekVPI, 10 Meter Cable
TIVH08 Isolated Probe; 800 MHz, ±2500 V, TekVPI, 3 Meter Cable
TIVH08L Isolated Probe; 800 MHz, ±2500 V, TekVPI, 10 Meter Cable
TIVM1 Isolated Probe; 1 GHz, ±50 V, TekVPI, 3 Meter Cable
TIVM1L Isolated Probe; 1 GHz, ±50 V, TekVPI, 10 Meter Cable
TPP0502 500 MHz, 2X TekVPI® passive voltage probe, 12.7 pF input capacitance
TPP0850 2.5 kV, 800 MHz, 50X TekVPI® passive high-voltage probe
P6015A 20 kV, 75 MHz high-voltage passive probe
TPA-BNC 1TekVPI® to TekProbe™ BNC adapter
TEK-DPG TekVPI deskew pulse generator signal source
067-1686-xx Power measurement deskew and calibration fixture

Looking for other probes? Check out the probe selector tool atwww.tek.com/probes.

1Recommended for connecting your existing TekProbe probes to the 5 Series MSO.

Step 9
Add accessories
Add traveling or mounting accessories
Optional Accessory Description
HC5 Hard carrying case
RM5 Rackmount kit
Step 10
Select power cord option
Power Cord Option Description
A0 North America power plug (115 V, 60 Hz)
A1 Universal Euro power plug (220 V, 50 Hz)
A2 United Kingdom power plug (240 V, 50 Hz)
A3 Australia power plug (240 V, 50 Hz)
A5 Switzerland power plug (220 V, 50 Hz)
A6 Japan power plug (100 V, 50/60 Hz)
A10 China power plug (50 Hz)
A11 India power plug (50 Hz)
A12 Brazil power plug (60 Hz)
A99 No power cord
Step 11
Add extended service and calibration options
Service Option Description
T3 Three Year Total Protection Plan, includes repair or replacement coverage from wear and tear, accidental damage, ESD or EOS plus preventive maintenance. Includes 5-day turnaround time and priority access to customer support.
T5 Five Year Total Protection Plan, includes repair or replacement coverage from wear and tear, accidental damage, ESD or EOS plus preventive maintenance. Includes 5-day turnaround time and priority access to customer support.
R5 Standard Warranty Extended to 5 Years. Covers parts, labor and 2-day shipping within country. Guarantees faster repair time than without coverage. All repairs include calibration and updates. Hassle free - a single call starts the process.
C3 Calibration service 3 Years. Includes traceable calibration or functional verification where applicable, for recommended calibrations. Coverage includes the initial calibration plus 2 years calibration coverage.
C5 Calibration service 5 Years. Includes traceable calibration or functional verification where applicable, for recommended calibrations. Coverage includes the initial calibration plus 4 years calibration coverage.
D1 Calibration Data Report
D3 Calibration Data Report 3 Years (with Option C3)
D5 Calibration Data Report 5 Years (with Option C5)
Feature upgrades after purchase
Add feature upgrades in the future
The 5 Series MSO products offer many ways to easily add functionality after the initial purchase. Node-locked licenses permanently enable optional features on a single product. Floating licenses allow license-enabled options to be easily moved between compatible instruments.
Upgrade feature Node-locked license upgrade Floating license upgrade Description
Add instrument functions SUP5-AFG SUP5-AFG-FL Add arbitrary function generator
SUP5-RL-125M SUP5-RL-125M-FL Extend record length to 125 Mpts / channel
SUP5-WIN N/A Add removable SSD with Windows 10 license installed
Add protocol analysis SUP5-SRAERO SUP5-SRAERO-FL Aerospace serial triggering and analysis (MIL-STD-1553, ARINC 429)
SUP5-SRAUDIO SUP5-SRAUDIO-FL Audio serial triggering and analysis (I2S, LJ, RJ, TDM)
SUP5-SRAUTO SUP5-SRAUTO-FL Automotive serial triggering and analysis (CAN, CAN FD, LIN, FlexRay)
SUP5-SRAUTOSEN SUP5-SRAUTOSEN-FL Automotive sensor serial triggering and analysis (SENT)
SUP5-SRCOMP SUP5-SRCOMP-FL Computer serial triggering and analysis (RS-232/422/485/UART)
SUP5-SREMBD SUP5-SREMBD-FL Embedded serial triggering and analysis (I2C, SPI)
SUP5-SRENET SUP5-SRENET-FL Ethernet serial triggering and analysis (10Base-T, 100Base-TX)
SUP5-SRUSB2 SUP5-SRUSB2-FL USB 2.0 serial bus triggering and analysis (LS, FS, HS)
Add serial compliance SUP5-CMAUTOEN SUP5-CMAUTOEN-FL Automotive Ethernet compliance test (100BASE-T1)
Add advanced analysis SUP5-DJA SUP5-DJA-FL Advanced jitter and eye analysis
SUP5-PWR SUP5-PWR-FL Advance power measurements and analysis
Add digital voltmeter SUP5-DVM N/A Add digital voltmeter / trigger frequency counter (Free with product registration at www.tek.com/register5mso)
Bandwidth upgrades after purchase
Add bandwidth upgrades in the future
The analog bandwidth of 5 Series MSO products can be upgraded after initial purchase. Bandwidth upgrades are purchased based on the number of FlexChannel inputs, the current bandwidth, and the desired bandwidth. Upgrades up to 1 GHz bandwidth can be performed in the field by installing a software license and a new front panel label. Upgrades to 2 GHz require installation and calibration at a Tektronix authorized service center. Bandwidth upgrades from 350 MHz or 500 MHz to 1 GHz or 2 GHz also include one TPP1000 1 GHz passive probe per instrument channel.
Model to be upgraded Bandwidth before upgrade Bandwidth after upgrade Order this bandwidth upgrade
MSO54 350 MHz 500 MHz SUP5-BW3T54
350 MHz 1 GHz SUP5-BW3T104
350 MHz 2 GHz SUP5-BW3T204 with opt. IFC or IFCIN
500 MHz 1 GHz SUP5-BW5T104
500 MHz 2 GHz SUP5-BW5T204 with opt. IFC or IFCIN
1 GHz 2 GHz SUP5-BW10T204 with opt. IFC or IFCIN
MSO56 350 MHz 500 MHz SUP5-BW3T56
350 MHz 1 GHz SUP5-BW3T106
350 MHz 2 GHz SUP5-BW3T206 with opt. IFC or IFCIN
500 MHz 1 GHz SUP5-BW5T106
500 MHz 2 GHz SUP5-BW5T206 with opt. IFC or IFCIN
1 GHz 2 GHz SUP5-BW10T206 with opt. IFC or IFCIN
MSO58 350 MHz 500 MHz SUP5-BW3T58
350 MHz 1 GHz SUP5-BW3T108
350 MHz 2 GHz SUP5-BW3T208 with opt. IFC or IFCIN
500 MHz 1 GHz SUP5-BW5T108
500 MHz 2 GHz SUP5-BW5T208 with opt. IFC or IFCIN
1 GHz 2 GHz SUP5-BW10T208 with opt. IFC or IFCIN
Last Modified: 2018-04-18 05:00:00
Downloads
Download

Download Manuals, Datasheets, Software and more:

Go to top