組み込みエンジニアにとって、オシロスコープを使いこなすことは「必須のスキル」であると言えます。電子回路の設計者はもちろんのこと、プログラマにとっても、自分が書いたソフトウェアは正しく動作しているのか、そのバグはハードウェアとソフトウェアのどちらに潜んでいるのか...といったことを知るために、オシロスコープは強い味方となります。
そこで本記事では、オシロスコープの使い方や見方などについて、初心者にも分かりやすく解説していきます。
オシロスコープとは?
まずは、そもそもオシロスコープとはどういったものなのかについて述べます。目に見えないものの代表として「電気」があります。18世紀、電気がまだ研究の対象であったころ、研究者にとって電気は目で見ることすらかなわず、「電気の挙動」を観測することは夢のまた夢でした。
20世紀に入って、この究極の夢を実現するものが出てきました。それが「オシロスコープ」です。つまり、オシロスコープは「電気の挙動」を目に見えるようにした測定器のひとつです。電気の存在は、物質を摩擦させて生じた引力によって分かりましたし(図1-1)、箔検電器によっても分かりました。
しかしその大きさ(電圧)を知るには、メータ式電圧計(図1-2)の登場を待たなければなりませんでした。
メータ式電圧計により、電圧(大きさ)が測定できるようになりましたが、高速で変動しメータの追従能力を超えるような「電圧の挙動」は観測しようがありません。重いメータ針を微小な鏡に置え、「電圧の挙動」により反射光を変動させ印画紙に焼付ける装置(電磁オシログラフ)が出現し、夢に少し近づきましたが、機械的構造であるため追従性に大きな限界がありました。
1897年にドイツで開発されたブラウン管は、蛍光面に向かう電子ビームを「電圧の挙動」によって偏向し、電子ビームが当たり発光した蛍光面の軌跡を見るものです。その軌跡が「電圧の挙動」そのものであり、追従性問題は構造的にクリアされました。
このブラウン管技術と電磁オシログラフのアイデアを組み合わせた結果、1934年にアメリカのDuMont社によりオシロスコープが商品化されました。初期のオシロスコープは必ずCRT(ブラウン管の一種)を表示部に用いて、「電圧の挙動」で直接電子ビームを偏向するというものでした(図1-3)。
そして1980年にデジタルストレージオシロスコープが現れてからは、これと区別するために、この初期のオシロスコープはアナログオシロスコープと呼ばれるようになりました。デジタルストレージオシロスコープは、「電圧の挙動」で直接電子ビームを偏向しません。「電圧の挙動」はA-Dコンバータによりデジタル化され、内蔵コンピュータで処理された後、表示部に現れます(図1-4)。
以降、文中で特別な断りがなければ、「オシロスコープ」はデジタルストレージオシロスコープを指すこととします。
オシロスコープとマルチメータの違い
電圧を測るとき、まず頭に浮かぶ測定器はマルチメータ(テスタ)でしょう(図1-5)。
変動のない直流電圧や安定した低周波の交流電圧なら手軽に測定できます。しかし、マルチメータとオシロスコープの違いは「時間の経過」の扱いにあります。基本的にマルチメータは時間軸を持たず、時間情報を表示できません。時間情報なしに数値のみを表示します。反応できる交流電圧の周波数にも大きな差があります。オシロスコープに比べ、マルチメータはずっと低い周波数にしか反応できません。
オシロスコープのメリット
「時間の経緯」を表示できることのメリットは計り知れず、マルチメータでは実現できない多大な効用をユーザに与えることができます(図1-6)。
例えば、研究に解を与えたり、積年の不具合を解消したり、今の仕事の効率をアップすることができます。プロはもちろんのこと、さらなる高みを目指すアマチュアにとってもオシロスコープを知り、使いこなすことは成功への大きなステップなのです。
ただ、「時間の経緯」を表示することのできるオシロスコープの操作は、マルチメータよりも複雑です。しかし要点を押さえながら理解を試みれば、決して難しいものではありません。
オシロスコープの使い方と見方
前項ではオシロスコープとは一体どういったものなのかについて述べました。ここからは、オシロスコープの基本的な使い方と見方について解説していきます。
表示画面の見方
オシロスコープは「電圧の挙動」を「時間の経過」にそって線表示するものです(図2-1)。
表示画面に波形を描く方法は心電図の描き方と似ています。波形は左から右へ等速で移動しながら電圧の大きさに応じて上下します。電圧が大きくなると上に向い、小さくなると下に向います。左が古い時間、右が新しい時間です。
オシロスコープの表示画面は、基本的に縦方向が電圧、横方向が時間を表した2次元表示です。表示画面の縦方向は電圧軸として電圧目盛、横方向は時間軸として時間目盛が刻まれています。
表示画面の上から下までは8分割されており、例えば8分割された1目盛あたりを1ボルト(1V/div:「1ボルトパーデビジョン」と呼ぶ)だとすると、その画面には8ボルトの電圧区間を表示できます。
時間軸もある幅を持った時間区間として表示されます。表示画面の左端から右端まで10分割されており、例えば10分割された1目盛あたりを1μs(1μs/div:「1マイクロセックパーデビジョン」と呼ぶ)だとすると、その画面には10μsの時間区間を表示できます。
波形の見え方の調整
波形が垂直軸(電圧軸)からはみ出す場合や、波形の高さ(波形振幅)が小さすぎて上下変動がよく判別できない場合には、垂直軸Scale(スケール)ツマミで波形を見やすい大きさに調整することができます。調整後、波形振幅が目盛のいくつ分であるかを知ることにより、波形振幅を測定できます。仮に1V/divで波形振幅が6.4目盛分あったとすると、6.4Vの波形振幅だと分かります(図2-2)。