Contact us
Live Chat with Tek representatives. Available 6:00 AM - 4:30 PM
Call us at
Available 6:00 AM – 5:00 PM (PST) Business Days
Download
Download Manuals, Datasheets, Software and more:
Feedback
5 Series MSO Specifications and Performance Verification Manual
This document contains the specifications and performance verification procedures for MSO54, MSO56, MSO58, and MSO58LP instruments.
This manual applies to:
MSO56, MSO58, MSO58LP
By downloading, you agree to the terms and conditions of the Manuals Download Agreement.
Manuals Download Agreement
ATTENTION: please read the following terms and conditions carefully before downloading any documents from this website. By downloading manuals from Tektronix' website, you agree to the following terms and conditions:
Manuals for Products That Are Currently Supported:
Tektronix hereby grants permission and license to owners of Tektronix instruments to download and reproduce the manuals on this website for their own internal or personal use. Manuals for currently supported products may not be reproduced for distribution to others unless specifically authorized in writing by Tektronix, Inc.
A Tektronix manual may have been revised to reflect changes made to the product during its manufacturing life. Thus, different versions of a manual may exist for any given product. Care should be taken to ensure that one obtains the proper manual version for a specific product serial number.
Manuals for Products That Are No Longer Supported:
Tektronix cannot provide manuals for measurement products that are no longer eligible for long term support. Tektronix hereby grants permission and license for others to reproduce and distribute copies of any Tektronix measurement product manual, including user manuals, operator's manuals, service manuals, and the like, that (a) have a Tektronix Part Number and (b) are for a measurement product that is no longer supported by Tektronix.
A Tektronix manual may be revised to reflect changes made to the product during its manufacturing life. Thus, different versions of a manual may exist for any given product. Care should be taken to ensure that one obtains the proper manual version for a specific product serial number.
This permission and license does not apply to any manual or other publication that is still available from Tektronix, or to any manual or other publication for a video production product or a color printer product.
Disclaimer:
Tektronix does not warrant the accuracy or completeness of the information, text, graphics, schematics, parts lists, or other material contained within any measurement product manual or other publication that is not supplied by Tektronix or that is produced or distributed in accordance with the permission and license set forth above.
Tektronix may make changes to the content of this website or to its products at any time without notice.
Limitation of Liability:
TEKTRONIX SHALL NOT BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY CONSEQUENTIAL OR INCIDENTAL DAMAGES, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR FOR INFRINGEMENT OF INTELLECTUAL PROPERTY) ARISING OUT OF THE USE OF ANY MEASUREMENT PRODUCT MANUAL OR OTHER PUBLICATION PRODUCED OR DISTRIBUTED IN ACCORDANCE WITH THE PERMISSION AND LICENSE SET FORTH ABOVE.
Read Online
SPECIFICATIONS
- Analog channel input and vertical specification
- Timebase system
- Trigger system
- Serial Trigger specifications
- Digital acquisition system
- Digital volt meter (DVM)
- Trigger frequency counter
- Arbitrary Function Generator system
- Display system (MSO54, MSO56, MSO58)
- Processor system
- Input/Output port specifications
- Data storage specifications
- Power supply system
- Safety characteristics
- Environmental specifications
- Mechanical specifications
PERFORMANCE VERIFICATION PROCEDURES
- Test record
- Input Impedance test record
- DC Balance test record
- DC Gain Accuracy test record
- DC Offset Accuracy test record
- Analog Bandwidth test record
- Random Noise, sample acquisition mode test record
- Random Noise, High Res mode test record
- Long term sample rate through AFG DC offset accuracy test records
- Performance tests
- Prerequisites
- Self test
- Check input impedance
- Check DC balance
- Check DC gain accuracy
- Check DC offset accuracy
- Check analog bandwidth
- Check random noise, sample acquisition mode
- Check random noise, High Res mode
- Check long term sample rate
- Check delta time measurement accuracy
- Check digital threshold accuracy
- Check DVM voltage accuracy (DC)
- Check DVM voltage accuracy (AC)
- Check trigger frequency accuracy and maximum input frequency
- Check AFG sine and ramp frequency accuracy
- Check AFG square and pulse frequency accuracy
- Check AFG signal amplitude accuracy
- Check AFG DC offset accuracy
Important safety information
This manual contains information and warnings that must be followed by the user for safe operation and to keep the product in a safe condition.
General safety summary
Use the product only as specified. Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. Carefully read all instructions. Retain these instructions for future reference.
This product shall be used in accordance with local and national codes.
For correct and safe operation of the product, it is essential that you follow generally accepted safety procedures in addition to the safety precautions specified in this manual.
The product is designed to be used by trained personnel only.
Only qualified personnel who are aware of the hazards involved should remove the cover for repair, maintenance, or adjustment.
Before use, always check the product with a known source to be sure it is operating correctly.
This product is not intended for detection of hazardous voltages.
Use personal protective equipment to prevent shock and arc blast injury where hazardous live conductors are exposed.
To avoid fire or personal injury
Use proper power cord
Use only the power cord specified for this product and certified for the country of use. Do not use the provided power cord for other products.
Ground the product
This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded. Do not disable the power cord grounding connection.
Power disconnect
The power cord disconnects the product from the power source. See instructions for the location. Do not position the equipment so that it is difficult to operate the power cord; it must remain accessible to the user at all times to allow for quick disconnection if needed.
Connect and disconnect properly
Do not connect or disconnect probes or test leads while they are connected to a voltage source.
Use only insulated voltage probes, test leads, and adapters supplied with the product, or indicated by Tektronix to be suitable for the product.
Observe all terminal ratings
To avoid fire or shock hazard, observe all rating and markings on the product. Consult the product manual for further ratings information before making connections to the product.
Do not exceed the Measurement Category (CAT) rating and voltage or current rating of the lowest rated individual component of a product, probe, or accessory. Use caution when using 1:1 test leads because the probe tip voltage is directly transmitted to the product.
Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.
Do not operate without covers
Do not operate this product with covers or panels removed, or with the case open. Hazardous voltage exposure is possible.
Avoid exposed circuitry
Do not touch exposed connections and components when power is present.
Do not operate with suspected failures
If you suspect that there is damage to this product, have it inspected by qualified service personnel.
Disable the product if it is damaged. Do not use the product if it is damaged or operates incorrectly. If in doubt about safety of the product, turn it off and disconnect the power cord. Clearly mark the product to prevent its further operation.
Before use, inspect voltage probes, test leads, and accessories for mechanical damage and replace when damaged. Do not use probes or test leads if they are damaged, if there is exposed metal, or if a wear indicator shows.
Examine the exterior of the product before you use it. Look for cracks or missing pieces.
Use only specified replacement parts.
Do not operate in wet/damp conditions
Be aware that condensation may occur if a unit is moved from a cold to a warm environment.
Do not operate in an explosive atmosphere
Keep product surfaces clean and dry
Remove the input signals before you clean the product.
Provide proper ventilation
Refer to the installation instructions in the manual for details on installing the product so it has proper ventilation.
Slots and openings are provided for ventilation and should never be covered or otherwise obstructed. Do not push objects into any of the openings.
Provide a safe working environment
Always place the product in a location convenient for viewing the display and indicators.
Avoid improper or prolonged use of keyboards, pointers, and button pads. Improper or prolonged keyboard or pointer use may result in serious injury.
Be sure your work area meets applicable ergonomic standards. Consult with an ergonomics professional to avoid stress injuries.
Use care when lifting and carrying the product. This product is provided with a handle or handles for lifting and carrying.
WARNING:The product is heavy. To reduce the risk of personal injury or damage to the device get help when lifting or carrying the product. |
Use only the Tektronix rackmount hardware specified for this product.
Probes and test leads
Before connecting probes or test leads, connect the power cord from the power connector to a properly grounded power outlet.
Keep fingers behind the protective barrier, protective finger guard, or tactile indicator on the probes. Remove all probes, test leads and accessories that are not in use.
Use only correct Measurement Category (CAT), voltage, temperature, altitude, and amperage rated probes, test leads, and adapters for any measurement.
Terms in this manual and on the product
These terms may appear in this manual:
WARNING:Warning statements identify conditions or practices that could result in injury or loss of life. |
CAUTION:Caution statements identify conditions or practices that could result in damage to this product or other property. |
These terms may appear on the product:
- DANGER indicates an injury hazard immediately accessible as you read the marking.
- WARNING indicates an injury hazard not immediately accessible as you read the marking.
- CAUTION indicates a hazard to property including the product.
Symbols on the product
| When this symbol is marked on the product, be sure to consult the manual to find out the nature of the potential hazards and any actions which have to be taken to avoid them. (This symbol may also be used to refer the user to ratings in the manual.) |
The following symbols(s) may appear on the product.
CAUTION: Refer to Manual | Protective Ground (Earth) Terminal | Earth Terminal | Chassis Ground | Standby |
Specifications
This chapter contains specifications for the instrument. All specifications are typical unless noted as guaranteed. Typical specifications are provided for your convenience but are not guaranteed. Specifications that are marked with the ✔ symbol are guaranteed and checked in Performance Verification.
- The instrument must have been calibrated in an ambient temperature between 18 °C and 28 °C (64 °F and 82 °F).
- The instrument must be operating within the environmental limits described in these specifications.
- The instrument must be powered from a source that meets the specifications.
- The instrument must have been operating continuously for at least 20 minutes within the specified operating temperature range.
- You must perform the Signal path compensation procedure after the warmup period. See the Signal path compensation procedure for how to perform signal path compensation. If the ambient temperature changes more than 5 °C (9 °F), repeat the procedure.
Warranted specifications describe guaranteed performance with tolerance limits or certain type-tested requirements.
Analog channel input and vertical specification
- Number of input channels
- MSO54: 4 BNC
- Input coupling
- DC, AC
- Input resistance selection
- 1 MΩ or 50 Ω
- ✓Input impedance 1 MΩ DC coupled
-
1 MΩ ±1%
- Input capacitance 1 MΩ DC coupled, typical
- 14.5 pF ±1.5 pF, 2 GHz model
- ✓Input impedance 50 Ω, DC coupled
- 50 Ω ±1% (VSWR ≤1.5:1, typical)
- Maximum input voltage, 1 MΩ
- 300 VRMS at the BNC. Installation Category II
- Maximum input voltage, 50 Ohm
-
5 VRMS, with peaks ≤ ±20 V (DF ≤6.25%)
- DC balance
- ✓ 0.1 div with DC-50 Ω oscilloscope input impedance (50 Ω BNC terminated)
Note: 500 µV/div is a 2X digital zoom of 1 mV/div. As such, it is guaranteed by testing the 1 mV/div setting. |
- Number of digitized bits
- 8 bits at 6.25 GS/s
- Sensitivity range, coarse
-
- 1 MΩ
- 500 µV/div to 10 V/div in a 1-2-5 sequence
- 50 Ω
- 500 µV/div to 1 V/div in a 1-2-5 sequence
- Sensitivity range, fine
-
Allows continuous adjustment from 1 mV/div to 10 V/div, 1 MΩ and from 1 mV/div to 1 V/div, 50 Ω
- 1 MΩ
- 500 µV/div to 10 V/div
- 50 Ω
- 500 µV/div to 1 V/div
- Sensitivity resolution, fine
- ≤1% of current setting
- ✓ DC gain accuracy
-
- 2 GHz model, Step Gain, 50 Ω
- ±1.2%, (±2.0% at 1 mV/div and 500 µV/div settings), de-rated at 0.100%/ °C above 30 °C
- 2 GHz model, Step Gain, 1 MΩ
- ±1.0%, (±2.0% at 1 mV/div and 500 µV/div settings), de-rated at 0.100%/ °C above 30 °C
- 1 GHz, 500 MHz, 350 MHz models, MSO58LP, Step Gain
- ±1.0%, (±2.0% at 1 mV/div and 500 µV/div settings), de-rated at 0.100%/ °C above 30 °C
- Variable gain
- ±1.5%, de-rated at 0.100%/ °C above 30 °C.
Note: 500 µV/div is a 2X digital zoom of 1 mV/div. As such, it is guaranteed by testing the 1 mV/div setting. |
- Offset ranges, maximum
-
- 2 GHz models
-
Input signal cannot exceed maximum input voltage for the 50 Ω input path.
Volts/div Setting Maximum offset range, 50 Ω Input 500 µV/div - 50 mV/div ±1 V 51 mV/div - 99 mV/div ± (-10 * (Volts/div Setting) + 1.5 V) 100 mV/div - 500 mV/div ±10 V 501 mV/div - 1 V/div ± (-10 * (Volts/div Setting) + 15 V) Volts/div Setting Maximum offset range, 1 MΩ Input 500 µV/div - 63 mV/div ±1 V 64 mV/div - 999 mV/div ±10 V 1 V/div - 10 V/div ±100 V - ≤ 1 GHz models (including MSO58LP)
-
Input signal cannot exceed maximum input voltage for the 50 Ω input path.
Volts/div Setting Maximum offset range 50 Ω Input 1 MΩ Input 500 µV/div - 63 mV/div ±1 V ±1 V 64 mV/div - 999 mV/div ±10 V ±10 V 1 V/div - 10 V/div ±10 V ±100 V
Note: 500 µV/div is a 2X digital zoom of 1 mV/div. As such, it is guaranteed by testing the 1 mV/div setting.
|
- Position range
- ±5 divisions
- ✓Offset accuracy
-
±(0.005 X | offset - position | + DC balance )
- Number of waveforms for average acquisition mode
- 2 to 10,240 Waveforms, default 16 waveforms
- DC voltage measurement accuracy, Average acquisition mode
-
Measurement Type DC Accuracy (In Volts) Average of ≥ 16 waveforms ±((DC Gain Accuracy) * |reading - (offset - position)| + Offset Accuracy + 0.1 * V/div setting) Delta volts between any two averages of ≥ 16 waveforms acquired with the same oscilloscope setup and ambient conditions ±(DC Gain Accuracy * |reading| + 0.05 div)
- DC voltage measurement accuracy, sample acquisition mode, typical
-
Measurement Type DC Accuracy (In Volts) Any Sample ±(DC Gain Accuracy * |reading - (offset - position)| + Offset Accuracy + 0.15 div + 0.6 mV) Delta Volts between any two samples acquired with the same oscilloscope setup and ambient conditions ±(DC Gain Accuracy * |reading| + 0.15 div + 1.2 mV)
- Bandwidth selections
- 50 Ω: 20 MHz, 250 MHz, and the full bandwidth value of your model
- MSO58LP Bandwidth selections
- 20 MHz, 250 MHz, and 1 GHz
- ✓Analog bandwidth 50 Ω DC coupled
-
- 2 GHz models
-
Volts/Div Setting Bandwidth 10 mV/div - 1 V/div DC - 2.00 GHz 5 mV/div - 9.98 mV/div DC - 1.50 GHz 2 mV/div - 4.98 mV/div DC - 350 MHz 1 mV/div - 1.99 mV/div DC - 175 MHz 500 µV/div - 995 µV/div DC - 175 MHz - 1 GHz models
-
Volts/Div Setting Bandwidth 1 mV/div - 1 V/div DC - 1.00 GHz 500 µV/div - 995 µV/div DC - 250 MHz - 500 MHz models
-
Volts/Div Setting Bandwidth 1 mV/div - 1 V/div DC - 500 MHz 500 µV/div - 995 µV/div DC - 250 MHz - 350 MHz models
-
Volts/Div Setting Bandwidth 1 mV/div - 1 V/div DC - 350 MHz 500 µV/div - 995 µV/div DC - 250 MHz
- Analog bandwidth, 1 MΩ, typical
-
- All model bandwidths except 350 MHz
-
Volts/Div Setting Bandwidth 1 mV/div - 10 V/div DC - 500 MHz 500 µV/div - 995 µV/div DC - 250 MHz - 350 MHz models
-
Volts/Div Setting Bandwidth 1 mV/div - 10 V/div DC - 350 MHz 500 µV/div - 995 µV/div DC - 250 MHz
- Analog bandwidth with TPP0500, TPP1000 probes, typical
- The limits are for ambient temperature of ≤30 °C and the bandwidth selection set to FULL. Reduce the upper bandwidth frequency by 1% for each °C above 30 °C.
Instrument Volts/Div Setting Bandwidth 2 GHz, 1 GHz 5 mV/div - 100 V/div DC - 1 GHz (TPP1000 Probe) 500 MHz 5 mV/div - 100 V/div DC - 500 MHz (TPP0500 Probe) 350 MHz 5 mV/div - 100 V/div DC - 350 MHz (TPP0500 Probe)
- Lower frequency limit, AC coupled, typical
-
<10 Hz when AC 1 MΩ coupled. The AC coupled lower frequency limits are reduced by a factor of 10 (<1 Hz) when 10X passive probes are used.
- Upper frequency limit, 250 MHz bandwidth limited, typical
-
250 MHz, ± 25%
- Upper frequency limit, 20 MHz bandwidth limited, typical
-
20 MHz, ± 20%
- Calculated rise time, typical
-
Model 50 Ω TPP0500 Probe TP1000 Probe Vertical 500 µV-1 V 5 mV-10 V 5 mV-10 V 2 GHz 225 ps 800 ps 400 ps 1 GHz 400 ps 800 ps 400 ps 500 MHz 800 ps 800 ps 800 ps 350 MHz 1.15 ns 1.15 ns 1.15 ns
- Peak Detect or Envelope mode pulse response, typical
-
Minimum pulse width is >640 ps (6.25 GS/s)
- Effective bits (ENOB), typical
- Typical effective bits for a 9-division p-p sine-wave input, 50 mV/div, 50 Ω
- 2 GHz models, Sample mode, 50 Ω
-
Bandwidth Input frequency 6.25 GS/s 2 GHz 10 MHz 6.20 2 GHz 600 MHz 6.20 250 MHz 10 MHz 7.30 250 MHz 200 MHz 7.30 20 MHz 10 MHz 7.60 - 2 GHz models, High Res mode, 50 Ω
-
Bandwidth Input frequency 6.25 GS/s 1 GHz 10 MHz 7.00 1 GHz 300 MHz 7.00 250 MHz 10 MHz 7.80 250 MHz 100 MHz 7.80 20 MHz 10 MHz 8.70 - 1 GHz, 500 MHz, 350 MHz models, Sample mode, 50 Ω
-
Bandwidth Input Frequency 6.25 GS/s 1 GHz 10 MHz 7.10 1 GHz 300 MHz 7.10 500 MHz 10 MHz 7.40 500 MHz 150 MHz 7.40 350 MHz 10 MHz 7.60 350 MHz 100 MHz 7.60 250 MHz 10 MHz 7.50 250 MHz 100 MHz 7.50 20 MHz 10 MHz 7.70 - 1 GHz, 500 MHz, 350 MHz models, High Res mode, 50 Ω
-
Bandwidth Input frequency 6.25 GS/s 1 GHz 10 MHz 7.60 1 GHz 300 MHz 7.50 500 MHz 10 MHz 7.90 500 MHz 150 MHz 7.80 350 MHz 10 MHz 8.20 350 MHz 100 MHz 8.20 250 MHz 10 MHz 8.10 250 MHz 100 MHz 8.10 20 MHz 10 MHz 8.90
- Random noise, sample acquisition mode
- Bandwidth at 1 mV/div is limited to 175 MHz in 50 Ω. Bandwidth at 2 mV/div is limited to 350 MHz in 50 Ω. Bandwidth at 5 mV/div is limited to 1.5 GHz in 50 Ω.
- Delay between analog channels, full bandwidth, typical
-
≤ 100 ps for any two channels with input impedance set to 50 Ω, DC coupling with equal Volts/div or above 10 mV/div
- Deskew range
-
-125 ns to +125 ns with a resolution of 40 ps
- Crosstalk (channel isolation), typical
-
≥ 200:1 up to the rated bandwidth for any two channels having equal Volts/div settings
- Overdrive recovery time, typical
-
- 50 Ω, no probe, 1 GHz bandwidth
-
Vertical scale 500% overdrive 5000% overdrive 5% 1% 0.2% 5% 1% 0.2% 1 mV/div <1 μs 2.0 ms 2.0 ms --- --- --- 10 mV/div <1 μs 3.0 ms 33 μs <1.2 μs <4.7 μs --- 100 mV/div <1 μs <1 μs 5.8 μs --- --- - 50 Ω, no probe, 2 GHz bandwidth
-
Vertical scale 500% overdrive 5000% overdrive 5% 1% 0.2% 5% 1% 0.2% 1 mV/div <1 μs 110 μs 2.0 ms --- --- --- 10 mV/div <1 μs <1 μs 2.0 ms <1 μs <1 μs --- 100 mV/div <1 μs <1 μs 2.3 ms --- --- - TPP1000 Probe
-
Vertical scale 500% overdrive 5000% overdrive 5% 1% 0.2% 5% 1% 0.2% 10 mV/div 20 μs 2.0 ms 2.0 ms 30 μs 50 μs 2.2 ms 20 mV/div 14 μs 2.0 ms 2.0 ms 30 μs 50 μs 110 μs 50 mV/div 12 μs 60 μs 2.0 ms --- --- --- 100 mV/div 12 μs 60 μs 2.0 ms --- --- ---
- Total probe power
-
TekVPI Compliant probe interfaces (8 per MSO58, 6 per MSO56, 4 per MSO54)
MSO58 and MSO56: 80 W maximum, (40 W maximum for channels 1 through 4, 40 W maximum for channels 5 through 8)
MSO54: 40 W maximum
- Probe power per channel
-
Voltage Max Amperage Voltage Tolerance 5 V 60 mA ±10% 12 V 2 A (20 W maximum software limit) ±10%
- TekVPI interconnect
-
All analog channel inputs on the front panel conform to the TEKVPI specification.
Timebase system
- Sample rate
-
Max HW Capability Number of Channels 6.25 GS/s 1- 8
- Interpolated waveform rate range
-
500 GS/sec, 250 GS/sec, 125 GS/sec, 62.5 GS/sec, 25 GS/sec, and 12.5 GS/sec
- Record length range
-
- Standard
- 1 kpoints to 125 Mpoints in single sample increments
- Standard
- 1 kpoints to 62.5 Mpoints in single sample increments
- Optional 5-RL-125M
- 125 Mpoints
- Seconds/Division range
-
Model 1 K 10 K 100 K 1 M 10 M 62.5 M 125 M MSO5X Standard 62.5 M 200 ps - 64 s 200 ps - 640 s 200 ps - 1000 s MSO5X Option 5-RL-125M 200 ps - 64 s 200 ps - 640 s 200 ps - 1000 s
- Maximum triggered acquisition rate, typical
-
Analog or digital channels: single channel [Analog or Digital 8-bit channel] on screen, measurements and math turned off. >40 wfm/sec
FastAcq Update Rate (analog only): >500 K/second with one channel active and >100 K/second with all eight active.
FastAcq Update Rate (analog and analog/digital): >400 K/second with two channels active and >100 K/second with all eight analog channels active.
Digital channel: >40/second with one channel (8-bits) active. There is no FastAcq for digital channels, but they do not slow down FastAcq for active analog channels.
- Aperture uncertainty
-
≤ 0.450 ps + (1 * 10-11 * Measurement Duration)RMS, for measurements having duration ≤ 100 ms
- ✓Timebase accuracy
-
±2.5 x 10-6 over any ≥1 ms time interval
Description Specification Factory Tolerance ±5.0 x10-7 At calibration, 23 °C ambient, over any ≥1 ms interval
Temperature stability ±5.0 x10-7 Tested at operating temperatures
Crystal aging ±1.5 x 10-6 Frequency tolerance change at 25 °C over a period of 1 year
- ✓Delta-time measurement accuracy, typical
-
The formula to calculate delta-time measurement accuracy (DTA) for a given instrument setting and input signal is given below (assumes insignificant signal content above Nyquist)
SR1 = Slew Rate (1st Edge) around 1st point in measurement
SR2 = Slew Rate (2nd Edge) around 2nd point in measurement
N = input-referred guaranteed noise limit. If Ntyp is what's specified, then N is computed by multiplying Ntyp by some scale factor (e.g., 1.5)
TBA = timebase accuracy or Reference Frequency Error +/-5 ppm
tp = delta-time measurement duration (sec)
The term under the square root sign is the stability and is due to TIE (Time Interval Error). The errors due to this term occur throughout a single-shot measurement. The second term is due to both the absolute center-frequency accuracy and the center-frequency stability of the timebase and varies between multiple single-shot measurements over the observation interval (the amount of time from the first single-shot measurement to the final single-shot measurement).Note:The formulas assume negligible errors due to measurement interpolation, and apply only when the interpolated sample rate is 25 GS/s or higher.
Trigger system
- Trigger bandwidth (edge, pulse, and logic), typical
-
2 GHz models, Edge 2 GHz 2 GHz models, Pulse and Logic 1 GHz 1 GHz models including MSO58LP 1 GHz 500 MHz models 500 MHz 350 MHz models 350 MHz
- Edge-type trigger sensitivity, DC coupled, typical
-
Table 1. 5 Series MSO Path Range Specification 1 MΩ path (all models) 0.5 mV/div to 0.99 mV/div 5 mV from DC to instrument bandwidth ≥ 1 mV/div The greater of 5 mV or 0.7 div from DC to lesser of 500 MHz or instrument BW, & 6 mV or 0.8 div from > 500 MHz to instrument bandwidth 50 Ω path, 1 GHz, 500 MHz, 350 MHz models The greater of 5.6 mV or 0.7 div from DC to the lesser of 500 MHz or instrument BW, & 7 mV or 0.8 div from > 500 MHz to instrument bandwidth 50 Ω path, 2 GHz models 0.5 mV/div to 0.99 mV/div 3.0 div from DC to instrument bandwidth 1 mV/div to 9.98 mV/div 1.5 divisions from DC to instrument bandwidth ≥ 10 mV/div < 1.0 division from DC to instrument bandwidth Line Fixed Table 2. MSO58LP Path Range Specification 1 MΩ path (all models) 0.5 mV/div to 0.99 mV/div 4.5 div from DC to instrument bandwidth ≥ 1 mV/div The greater of 5 mV or 0.7 div from DC to lesser of 500 MHz or instrument BW, & 6 mV or 0.8 div from > 500 MHz to instrument bandwidth 50 Ω path The greater of 5.6 mV or 0.7 div from DC to the lesser of 500 MHz or instrument BW, & 7 mV or 0.8 div from > 500 MHz to instrument bandwidth Line Fixed AUX Trigger in 200 mVPP, DC to 250 MHz
- Trigger jitter, typical
-
≤ 5 psRMS for sample mode and edge-type trigger
≤ 7 psRMS for edge-type trigger and FastAcq mode
≤ 40 psRMS for non edge-type trigger modes
≤ 200 psRMS for AUX trigger in, Sample acquisition mode, edge trigger (MSO58LP only)
≤ 220 psRMS for AUX trigger in, FastAcq acquisition mode, edge trigger (MSO58LP only)
- AUX In trigger skew between instruments, typical
-
±100 ps jitter on each instrument with 150 ps skew; ≤350 ps total between instruments.
Skew improves for sinusoidal input voltages ≥500 mV
- Edge-type trigger sensitivity, not DC coupled, typical
-
Trigger Coupling Typical Sensitivity NOISE REJ 2.5 times the DC Coupled limits HF REJ 1.0 times the DC Coupled limits from DC to 50 kHz. Attenuates signals above 50 kHz. LF REJ 1.5 times the DC Coupled limits for frequencies above 50 kHz. Attenuates signals below 50 kHz.
- Lowest frequency for successful operation of Set Level to 50% function, typical
- 45 Hz
- Logic-type, logic qualified trigger, or events-delay sensitivities, DC coupled, typical
- 2.0 divisions, at vertical settings ≥5 mV/div.
- Pulse-type runt trigger sensitivities, typical
- 2.0 division at vertical settings ≥5 mV/div.
- Pulse-type trigger width and glitch sensitivities, typical
- 2.0 divisions at vertical settings ≥5 mV/div.
- Logic-type triggering, minimum logic or rearm time, typical
- For Logic, time between channels refers to the length of time a logic state derived from more than one channel must exist to be recognized. For Events, the time is the minimum time between a main and delayed event that will be recognized if more than one channel is used.
- Minimum clock pulse widths for setup/hold time violation trigger, typical
- Active pulsewidth is the width of the clock pulse from its active edge (as defined in the Clock Edge menu item) to its inactive edge. Inactive pulsewidth is the width of the pulse from its inactive edge to its active edge.
- Setup/hold violation trigger, setup and hold time ranges, typical
-
Feature Min Max Setup Time 0 ns 20 s Hold Time 0 ns 20 s Setup + Hold Time 320 ps 22 s Input coupling on clock and data channels must be the same.
For Setup Time, positive numbers mean a data transition before the clock.
For Hold Time, positive numbers mean a data transition after the clock edge.
Setup + Hold Time is the algebraic sum of the Setup Time and the Hold Time programmed by the user.
- Pulse type trigger, minimum pulse, rearm time, transition time
-
Pulse class Minimum pulse width Minimum rearm time Runt 160 ps + trise 160 ps + trise Time-Qualified Runt 160 ps + trise 160 ps + trise Width 160 ps + trise 160 ps + trise Slew Rate (minimum transition time) 160 ps + trise 160 ps + trise For trigger class width, pulse width refers to the width of the pulse being measured. Rearm time refers to the time between pulses.
For trigger class runt, pulse width refers to the width of the pulse being measured. Rearm time refers to the time between pulses.
For trigger class slew rate, pulse width refers to the delta time being measured. Rearm time refers to the time it takes the signal to cross the two trigger thresholds again.
trise is rise time of the instrument.
Active pulsewidth is the width of the clock pulse from its active edge (as defined in the Clock Edge menu item) to its inactive edge
Inactive pulsewidth is the width of the pulse from its inactive edge to its active edge.
- Transition time trigger, delta time range
- 160 ps to 20 s.
- Time range for glitch, pulse width, timeout, time-qualified runt, or time-qualified window triggering
- 160 ps to 20 s.
- Time accuracy for pulse, glitch, timeout, or width triggering
-
Time Range Accuracy 1 ns to 500 ns ±(160 ps +Time Base Error * Setting). 520 ns to 1 s ±(160 ps +Time Base Error * Setting).
- B trigger after events, minimum pulse width and maximum event frequency, typical
- Minimum pulse width:
160 ps
+ trise
Maximum event frequency: Instrument bandwidth.
trise is rise time of the instrument.
- B trigger, minimum time between arm and trigger, typical
-
320 ps
For trigger after time, this is the time between the end of the time period and the B trigger event.
For trigger after events, this is the time between the last A trigger event and the first B trigger event.
- B trigger after time, time range
- 160 ps to 20 seconds
- B trigger after events, event range
- 1 to 65,471
- Trigger level ranges
-
Source Range Any Channel ±5 divs from center of screen Line Fixed at about 50% of line voltage Source Range Any Channel ±5 divs from center of screen Aux In Trigger ±5 V Line Fixed at about 50% of line voltage This specification applies to logic and pulse thresholds.
- Trigger level accuracy, DC coupled, typical
- For signals having rise and fall times ≥10 ns:
- Trigger holdoff range
- 0 ns to 10 seconds
Serial Trigger specifications
- Maximum serial trigger bits
- 128 bits
- Optional serial bus interface triggering
-
- I2C
-
Address Triggering: 7 & 10 bits of user-specified addresses supported
Data Trigger: 1 - 5 Bytes of user-specified data
Trigger on: Start, Repeated Start, Stop, Missing Ack, Data, Address, or Address & Data
Maximum Data Rate: 10 Mb/s
- SPI
-
Data Trigger: 1 - 16 Bytes of user-specified data
Trigger on: SS Active, Data
Maximum Data Rate: 20 Mb/s
- CAN
-
Data Trigger: 1 - 8 Bytes of user-specified data, including qualifiers of equal to (=), not equal to (≠), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=)
Trigger on: Start of Frame, Type of Frame, Identifier, Data, Identifier & Data, End of Frame, Missing Ack, or Bit Stuffing Errors
Frame Type: Data, Remote, Error, Overload
Identifier: Standard (11 bit) and Extended (29 bit) identifiers
Maximum Data Rate: 1 Mb/s
- LIN
-
Identifier Trigger: 6 bits of user-specified data, equal to (=)
Data Trigger: 1 - 8 Bytes of user-specified data, including qualifiers of equal to (=), not equal to (≠), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), inside range, outside range
Error Trigger: Sync, Identifier Parity, Checksum
Trigger on: Sync, Identifier, Data, Identifier & Data, Wakeup Frame, Sleep Frame, or Error
Maximum Data Rate: 100 kb/s
- Flexray
-
Indicator Bits: Normal (01XX), Payload (11XX), Null (00XX), Sync (XX10), Startup (XX11)
Frame ID Trigger: 11 bits of user-specified data, including qualifiers of equal to (=), not equal to (≠), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=)
Cycle Count Trigger: 6 bits of user-specified data , including qualifiers of equal to (=), not equal to (≠), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=)
Header Fields Trigger: 40 bits of user-specified data comprising Indicator Bits, Identifier, Payload Length, Header CRC, and Cycle Count, equal to (=)
Data Trigger: 1 - 16 Bytes of user-specified data, with 0 to 253, or "don't care" bytes of data offset,including qualifiers of equal to (=), not equal to (≠), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), Inside Range, Outside Range
End Of Frame: User-chosen types Static, Dynamic (DTS), and All
Error Trigger: Header CRC, Trailer CRC, Null Frame-static, Null Frame-dynamic, Sync Frame, Startup frame (No Sync)
Trigger on: Start of Frame, Frame ID, Indicator Bits, Cycle Count, Header Fields, Data, Identifier & Data, End of Frame, or Error
Maximum Data Rate: 40 Mb/s
- Audio (I2S)
-
Data Trigger: 32 bits of user-specified data in a left word, right word, or either, including qualifiers of equal to (=), not equal to (≠), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), inside range, outside range
Trigger on: Word Select, Data
Maximum Data Rate: 12.5 Mb/s
Left Justified (LJ)
Data Trigger: 32 bits of user-specified data in a left word, right word, or either, including qualifiers of equal to (=), not equal to (≠), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), inside range, outside range
Trigger on: Word Select, Data
Maximum Data Rate: 12.5 Mb/s
Right Justified (RJ)
Data Trigger: 32 bits of user-specified data in a left word, right word, or either, including qualifiers of equal to (=), not equal to (≠), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), inside range, outside range
Trigger on: Word Select, Data
Maximum Data Rate: 12.5 Mb/s
TDM
Data Trigger: 32 bits of user-specified data in a channel 1-64, including qualifiers of equal to (=), not equal to (≠), less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), inside range, outside range
Trigger on: Frame Sync, Data
Maximum Data Rate: 25 Mb/s
- RS232
-
Bit Rate: 50 bps - 10 Mbps
Data Bits: 7, 8, or 9
Parity: None, Odd, or Even
Trigger on: Start, End of Packet, Data, Parity Error
- MIL-STD-1553
-
Bit Rate: 1 Mb/s
Trigger on:
Sync
Word Type (Command, Status, Data)
Command Word (set RT Address (=, ≠, <, >, ≤, ≥, inside range, outside range), T/R, Sub-address/ Mode, Data Word Count/Mode Code, and Parity individually)
Status Word (set RT Address ((=, ≠, <, >, ≤, ≥, inside range, outside range), Message Error, Instrumentation, Service Request Bit, Broadcast Command Received, Busy, Subsystem Flag, Dynamic Bus Control Acceptance (DBCA), Terminal Flag, and Parity individually)
Data Word (user-specified 16-bit data value)
Error (Sync, Parity, Manchester, Non-contiguous data)
Idle Time (minimum time selectable from 4 μs to 100 μs; maximum time selectable from 12 μs to 100 μs; trigger on < minimum, > maximum, inside range, outside range)
For MIL-STD-1553, Trigger selection of Command Word will trigger on Command and ambiguous Command/Status words. Trigger selection of Status Word will trigger on Status and ambiguous Command/Status words
- USB
-
Data Rates Supported: High: 480 Mbs, Full: 12 Mbs, Low: 1.5Mbs
Trigger On: Sync, Reset, Suspend, Resume, End of Packet, Token Packet, Data Packet, Handshake Packet, Special Packet, Error
- Ethernet
-
Bit Rate: 10 BASE-T, 10 Mbps; 100 BASE-TX, 100 Mbps
Trigger On: Start of Frame, MAC Address, MAC Length/Type, IP Header, TCP Header, Client Data, End of Packet, Idle, FCS (CRC) Error, MAC Q-Tag control Information
Digital acquisition system
- Digital channel maximum sample rate
- 6.25 GS/s
- Transition detect (digital peak detect)
- Displayed data at sample rates less than 6.25 GS/s (decimated data), that contains multiple transitions between sample points will be displayed with a bright white colored edge.
- Digital-To-Analog trigger skew
- 1 ns
- Digital to digital skew
- 320 ps from bit 0 of any TekVPI channel to bit 0 of any TekVPI channel.
- Digital skew within a FlexChannel
- 160 ps within any TekVPI channel
Digital volt meter (DVM)
- Measurement types
-
DC, ACRMS+DC, ACRMS
- Voltage resolution
- 4 digits
- ✓ Voltage accuracy
-
- DC:
-
±((1.5% * |reading - offset - position|) + (0.5% * |(offset - position)|) + (0.1 * Volts/div))
De-rated at 0.100%/°C of |reading - offset - position| above 30 °C
Signal ± 5 divisions from screen center
- AC:
-
± 2% (40 Hz to 1 kHz) with no harmonic content outside 40 Hz to 1 kHz range
AC, typical: ± 2% (20 Hz to 10 kHz)
For AC measurements, the input channel vertical settings must allow the VPP input signal to cover between 4 and 10 divisions and must be fully visible on the screen
Trigger frequency counter
- Resolution
- 8-digits
- ✓Accuracy
-
±(1 count + time base accuracy * input frequency)
The signal must be at least 8 mVpp or 2 div, whichever is greater.
- ✓Maximum input frequency
- 10 Hz to maximum bandwidth of the analog channel
Arbitrary Function Generator system
- Function types
- Arbitrary, sine, square, pulse, ramp, triangle, DC level, Gaussian, Lorentz, exponential rise/fall, sin(x)/x, random noise, Haversine, Cardiac
- Amplitude range
- Values are peak-to-peak voltages
Waveform 50 Ω 1 MΩ Arbitrary 10 mV to 2.5 V 20 mV to 5 V Sine 10 mV to 2.5 V 20 mV to 5 V Square 10 mV to 2.5 V 20 mV to 5 V Pulse 10 mV to 2.5 V 20 mV to 5 V Ramp 10 mV to 2.5 V 20 mV to 5 V Triangle 10 mV to 2.5 V 20 mV to 5 V Gaussian 10 mV to 1.25 V 20 mV to 2.5 V Lorentz 10 mV to 1.2 V 20 mV to 2.4 V Exponential Rise 10 mV to 1.25 V 20 mV to 2.5 V Exponential Fall 10 mV to 1.25 V 20 mV to 2.5 V Sine(x)/x 10 mV to 1.5 V 20 mV to 3.0 V Random Noise 10 mV to 2.5 V 20 mV to 5 V Haversine 10 mV to 1.25 V 20 mV to 2.5 V Cardiac 10 mV to 2.5 V 20 mV to 5 V
- Maximum sample rate
- 250 MS/s
- Arbitrary function record length
- 128 K Samples
- Sine waveform
-
- Frequency range
- 0.1 Hz to 50 MHz
- Frequency setting resolution
- 0.1 Hz
- Frequency accuracy
-
130 ppm (frequency ≤ 10 kHz), 50 ppm (frequency > 10 kHz)
This is for Sine, Ramp, Square and Pulse waveforms only.
- Amplitude range
- 20 mVpp to 5 Vpp into Hi-Z; 10 mVpp to 2.5 Vpp into 50 Ω
- Amplitude flatness, typical
-
±0.5 dB at 1 kHz
±1.5 dB at 1 kHz for < 20 mVpp amplitudes
- Total harmonic distortion, typical
-
1% for amplitude ≥ 200 mVpp into 50 Ω load
2.5% for amplitude > 50 mV AND < 200 mVpp into 50 Ω load
This is for Sine wave only.
- Spurious free dynamic range, typical
-
40 dB (Vpp ≥ 0.1 V); 30 dB (Vpp ≥ 0.02 V), 50 Ω load
- Square and pulse waveform
-
- Frequency range
- 0.1 Hz to 25 MHz
- Frequency setting resolution
- 0.1 Hz
- Duty cycle range
-
10% - 90% or 10 ns minimum pulse, whichever is larger
Minimum pulse time applies to both on and off time, so maximum duty cycle will reduce at higher frequencies to maintain 10 ns off time
- Duty cycle resolution
- 0.1%
- Minimum pulse width, typical
- 10 ns. This is the minimum time for either on or off duration.
- Rise/Fall time, typical
- 5 ns, 10% - 90%
- Pulse width resolution
- 100 ps
- Overshoot, typical
- <
6% for signal steps greater than 100 mVpp
This applies to overshoot of the positive-going transition (+overshoot) and of the negative-going (-overshoot) transition
- Asymmetry, typical
- ±1% ±5 ns, at 50% duty cycle
- Jitter, typical
- < 60 ps TIERMS, ≥ 100 mVpp amplitude, 40%-60% duty cycle
- Cardiac maximum frequency
- 1 MHz
- Ramp and triangle waveform
-
- Frequency range
- 0.1 Hz to 500 kHz
- Frequency setting resolution
- 0.1 Hz
- Variable symmetry
- 0% - 100%
- Symmetry resolution
- 0.1%
- DC level range
-
±2.5 V into Hi-Z
±1.25 V into 50 Ω
- Gaussian pulse, Haversine, and Lorentz pulse
-
- Maximum frequency
- 5 MHz
- Exponential rise fall maximum frequency
- 5 MHz
- Sin(x)/x
-
- Maximum frequency
- 2 MHz
- Random noise amplitude range
-
20 mVpp to 5 Vpp into Hi-Z
10 mVpp to 2.5 Vpp into 50 Ω
For both isolated noise signal and additive noise signal.
- ✓Sine and ramp frequency accuracy
-
1.3 x 10-4 (frequency ≤10 kHz)
5.0 x 10-5 (frequency >10 kHz)
- ✓Square and pulse frequency accuracy
-
1.3 x 10-4 (frequency ≤10 KHz);
5.0 x 10-5 (frequency >10 KHz)
- Signal amplitude resolution
-
1 mV (Hi-Z)
500 μV (50 Ω)
- ✓Signal amplitude accuracy
- ±[ (1.5% of peak-to-peak amplitude setting) + (1.5% of absolute DC offset setting) + 1 mV ] (frequency = 1 kHz)
- DC offset range
-
±2.5 V into Hi-Z
±1.25 V into 50 Ω
- DC offset resolution
-
1 mV (Hi-Z)
500 μV (50 Ω)
- ✓DC offset accuracy
- ±[ (1.5% of absolute offset voltage setting) + 1 mV ]
Display system (MSO54, MSO56, MSO58)
- Display type
-
Display area - 13.55 inches (344.16 mm) (H) x 7.62 inches (193.59 mm) (V), 15.55 inches (395 mm) diagonal, 6-bit RGB color, (1920 X 1080) TFT liquid crystal display (LCD) with capacitive touch
- Display resolution
- 1,920 horizontal × 1,080 vertical pixels (High Definition)
- Luminance, typical
-
250 cd/m2, (Minimum: 200 cd/m2
)
Display luminance is specified for a new display set at full brightness.
- Color support
- 262K (6-bit RGB) colors.
Processor system
- Host processor
- Intel i5-4400E, 2.7 GHz, 64-bit, dual core processor
- Operating system
-
Default instrument: Closed Linux
Instrument with option 5-WIN installed: Microsoft Windows 10. Option 5-WIN is not available for MSO58LP instrument.
- Internal storage
- ≥ 80 GB. Form factor is an 80 mm m.2 card with a SATA-3 interface
- Solid State Drive (SSD) with Microsoft Windows 10 OS (option 5-WIN )
- ≥ 512 GB SSD. Form factor is a 2.5-inch SSD with a SATA-3 interface. This drive is customer installable and includes the Microsoft Windows 10 Enterprise IoT 2016 LTSB (64-bit) operating system
Input/Output port specifications
- Ethernet interface
- An 8-pin RJ-45 connector that supports 10/100/1000 Mb/s
- Video signal output
- A 15-pin, 3-row, D-sub VGA connector.
- DVI connector
-
A 29-pin DVI-D connector; connect to show the oscilloscope display on an external monitor or projector
Maximum supported resolution, Windows: 1920 x 1200 @ 60 Hz
Maximum supported resolution, Linux: 1920 x 1080 @ 60 Hz
Only a single TMDS link is provided
Analog VGA signaling is not provided
- DisplayPort connector
-
A 20-pin DisplayPort connector; connect to show the oscilloscope display on an external monitor or projector
Maximum supported resolution, Windows: 2560 x 1440 @ 60Hz
Maximum supported resolution, Linux: 1920 x 1080 @ 60 Hz
DP++ adapter: Maximum supported resolution: 2560 x1440 @ 60 Hz
- Simultaneous displays
- Up to 3 displays (including the internal display) with a maximum of 1 display per port.
- USB interface (Host, Device ports)
-
5 Series MSO Front panel USB Host ports: Two USB 2.0 Hi-Speed ports, one USB 3.0 SuperSpeed port
MSO58LP Front panel USB Host ports: One USB 2.0 Hi-Speed port, one USB 3.0 SuperSpeed port
All instruments, Rear panel USB Host ports: Two USB 2.0 Hi-Speed ports, two USB 3.0 SuperSpeed ports
All instruments, Rear panel USB Device port: One USB 3.0 SuperSpeed Device port providing USBTMC support
- Probe compensator signal output voltage and frequency, typical
-
Characteristic Value Output Voltage Default: 0-2.5 V amplitude Impedance 1 kΩ Frequency 1 kHz
- ✓Auxiliary output, AUX OUT, Trigger Out, Event, or Reference Clock Out
-
- Selectable output
-
Acquisition Trigger Out
Reference Clock Out
AFG Trigger Out
- Acquisition Trigger Out
- User selectable transition from HIGH to LOW, or LOW to HIGH, indicates the trigger occurred. The signal returns to its previous state after approximately 100 ns
- Acquisition trigger jitter
-
300 ps (peak-to-peak)
- Reference Clock Out
- Reference clock output tracks the acquisition system and can be referenced from either the internal clock reference or the external clock reference
- AFG Trigger Out
-
The output frequency is dependent on the frequency of the AFG signal as shown in the following table:
AFG signal frequency AFT trigger frequency ≤ 4.9 MHz Signal frequency > 4.9 MHz to 14.7 MHz Signal frequency / 3 > 14.7 MHz to 24.5 MHz Signal frequency / 5 > 24.5 MHz to 34.3 MHz Signal frequency / 7 > 34.3 MHz to 44.1 MHz Signal frequency / 9 > 44.1 MHz to 50 MHz Signal frequency / 11 - AUX OUT Output Voltage
-
Characteristic Limits Vout (HI) ≥ 2.5 V open circuit; ≥ 1.0 V into a 50 Ω load to ground Vout (LO) ≤ 0.7 V into a load of ≤ 4 mA; ≤0.25 V into a 50 Ω load to ground
- External reference input
-
- Nominal input frequency
-
10 MHz
- Frequency Variation Tolerance
-
9.99996 MHz to 10.00004 MHz (±4.0 x 10-6)
- Sensitivity, typical
-
Vin 1.5 Vp-p using a 50 Ω termination
- Maximum input signal
- 7 Vpp
- Impedance
-
1.2 K Ohms ±20% in parallel with 18 pf ±5 pf at 10 MHz
Data storage specifications
- Nonvolatile memory retention time, typical
- No time limit for front panel settings, saved waveforms, setups, product licensing, and calibration constants.
- Real-time clock
- A programmable clock providing time in years, months, days, hours, minutes, and seconds.
- Nonvolatile memory capacity
-
- Instrument S/N
-
A 2 kbit EEPROM on the main board that stores the instrument serial number, instrument start up count, total uptime and administration passwords.
- Companion CvP
- A pair of 16 Mbit flash memory devices that stores a portion of the Companion FPGA image data. One device serves as a backup for the other device.
- AFG S/N
- A 2 kbit EEPROM on the AFG riser card that stores a copy of the instrument serial number which is used to validate the AFG calibration.
- Front Panel ID
- A 64 kbit EEPROM on the LED board that stores the USB vendor ID and device ID for the internal front panel controller.
- BIOS
- A 128 Mbit flash memory device that stores the firmware image and device configuration for the host processor and chipset sub-processors. This includes the Basic Input Output System (BIOS), Management Engine (ME), Embedded Controller (EC) and Network Interface Controller (NIC). The Ethernet MAC address is stored in this device.
- CMOS Memory
- The host processor chipset includes an integrated memory device, powered by the real-time clock (RTC) battery, which stores BIOS configuration settings. A customer accessible switch disconnects the RTC battery from the chipset which clears the contents of the integrated CMOS memory device.
- Memory SPD
- Each SODIMM (memory module) contains a serial presence detect (SPD) memory device implemented using an unspecified memory technology. Each SPD device contains the parameter data specific to its memory module. All SPD devices are treated by the instrument as read only. The size of a given SPD is unspecified. The 4 channel instrument includes 4 SPD devices. The 6 channel and 8 channel instruments include 6 SPD devices.
- UCD9248
- The instrument includes 3 UCD9248 power supply controllers. Each controller contains an unspecified quantity of nonvolatile memory that stores various power supply configuration settings.
- PMU
- A power management unit (PMU) microcontroller is used to manage instrument power supplies and hardware initialization. The PMU includes 32 KB of nonvolatile memory for storage of its own binary executable and redundant storage of UCD9248 device settings.
- Analog Board Controller
-
A microcontroller is used to manage analog board operation. The PMU includes 64 KB of nonvolatile memory for storage of its own binary executable.
- Carrier FPGA
-
The carrier FPGA stores its own configuration in its own internal 0.33 Mbit nonvolatile memory. The carrier FPGA implements simple "glue logic" for the instrument.
- Mass storage device capacity
-
- Linux
- ≥ 250 GB. Form factor is a 2.5 inch SSD with a SATA-3 interface. Waveforms and setups are stored on the solid state drive. Provides storage for saved customer data and the Linux operating system.
- Windows (optional)
- ≥ 500 GB. Form factor is a 2.5 inch SSD with a SATA-3 interface. This drive is customer installable and provides storage for the Windows operating system option, and saved customer data.
Power supply system
- Power
-
- Power consumption
- 400 Watts maximum
- Source voltage
- 100 - 240 V ±10% (50 Hz to 60 Hz)
- Source frequency
- 50 Hz to 60 Hz ±10%, at 100 - 240 V ±10%
- Fuse Rating
- 12.5 A, 250 Vac
Safety characteristics
- Safety certification
-
US NRTL Listed - UL61010-1 and UL61010-2-030
Canadian Certification - CAN/CSA-C22.2 No. 61010.1 and CAN/CSA-C22.2 No 61010.2.030
EU Compliance - Low Voltage Directive 2014-35-EU and EN61010-1.
International Compliance - IEC 61010-1 and IEC61010-2-030
- Pollution degree
- Pollution degree 2, indoor, dry location use only
Environmental specifications
- Temperature
-
- Operating
- +0 °C to +50 °C (32 °F to 122 °F)
- Non-operating
- -20 °C to +60 °C (-4 °F to 140 °F)
- Humidity
-
- Operating
- 5% to 90% relative humidity (% RH) at up to +40 °C
- Non-operating
- 5% to 90% relative humidity (% RH) at up to +40 °C
- Altitude
-
- Operating
- Up to 3,000 meters (9,843 feet)
- Non-operating
- Up to 12,000 meters (39,370 feet)
- Random vibration
-
- Operating
- 0.31 GRMS, 5-500 Hz, 10 minutes per axis, 3 axes (30 minutes total)
- Non-operating
- 2.46 GRMS, 5-500 Hz, 10 minutes per axis, 3 axes (30 minutes total)
- Temperature
-
- Operating
- +0 °C to +50 °C (32 °F to 122 °F)
- Non-operating
-
-20 °C to +60 °C (-4 °F to 140 °F)
- Humidity
-
- Operating
-
5% to 90% relative humidity (% RH) at up to +40 °C
5% to 55% RH above +40 °C up to +50 °C, noncondensing, and as limited by a maximum wet-bulb temperature of +39 °C
- Non-operating
-
5% to 90% relative humidity (% RH) at up to +40 °C
5% to 39% RH above +40 °C up to +50 °C, noncondensing, and as limited by a maximum wet-bulb temperature of +39 °C
- Altitude
-
- Operating
- Up to 3,000 meters (9,843 feet)
- Non-operating
- Up to 12,000 meters (39,370 feet)
- Random vibration, MSO58LP
-
- Operating
- 0.31 GRMS, 5-500 Hz, 10 minutes per axis, 3 axes (30 minutes total)
- Non-operating
- 2.46 GRMS, 5-500 Hz, 10 minutes per axis, 3 axes (30 minutes total)
Mechanical specifications
- Dimensions, 5 Series MSO
-
Height: 12.2 in (309 mm), feet folded in, handle to back
Height: 14.6 in (371 mm) feet folded in, handle up
Width: 17.9 in (454 mm) from handle hub to handle hub
Depth: 8.0 in (205 mm) from back of feet to front of knobs, handle up
Depth: 11.7 in (297.2 mm) feet folded in, handle to the back
- Dimensions, MSO58LP
-
Height: 3.44 in (87.3 mm)
Width: 17.01 in (432 mm)
Depth: 23.85 in (605.7 mm)
Fits rack depths from 24 inches to 32 inches
- Weight, 5 Series MSO
-
MSO54 1 GHz, 500 MHz, 350 MHz models: 22.7 lbs (10.3 kg)
MSO54 2 GHz models: 23.6 lbs (10.7 kg)
MSO56 1 GHz, 500 MHz, 350 MHz models: 23.5 lbs (10.7 kg)
MSO56 2 GHz models: 24.3 lbs (11 kg)
MSO58 1 GHz, 500 MHz, 350 MHz models: 23.8 lbs (10.8 kg)
MSO58 2 GHz models: 24.7 lbs (11.2 kg)
Front cover without pouch: 1.9 lbs (0.86 kg)
Front cover with pouch: 3.1 lbs (1.4 kg)
- Weight, MSO58LP
-
25.5 lbs (11.6 kg)
- Cooling , 5 Series MSO
- The clearance requirement for adequate cooling is 2.0 in (50.8 mm) on the right side of the instrument (when viewed from the front) and on the rear of the instrument
- Cooling, MSO58LP
- The clearance requirement for adequate cooling is 2.0 in (50.8 mm) on the left and right sides of the instrument (when viewed from the front). Air flows through the instrument from left to right
Performance verification procedures
This chapter contains performance verification procedures for the specifications marked with the ✔ symbol. The following equipment, or a suitable equivalent, is required to complete these procedures.
The performance verification procedures verify the performance of your instrument. They do not adjust your instrument. If your instrument fails any of the performance verification tests, repeat the failing test, verifying that the test equipment and settings are correct. If the instrument continues to fail a test, contact Tektronix Customer Support for assistance.
These procedures cover all 5 Series MSO instruments. Completion of the performance verification procedure does not update the instrument time and date.
Print the test records on the following pages and use them to record the performance test results for your oscilloscope. Disregard checks and test records that do not apply to the specific model you are testing.
The following table lists the required equipment. You might need additional cables and adapters, depending on the actual test equipment you use.
Required equipment | Minimum requirements | Examples |
---|---|---|
DC voltage source | 3 mV to 4 V, ±0.1% accuracy | Fluke 9500B Oscilloscope Calibrator with a 9530 Output Module |
Leveled sine wave generator | 50 kHz to 2 GHz, ±4% amplitude accuracy | |
Time mark generator | 80 ms period, ±1.0 x 10-6 accuracy, rise time <50 ns | |
Logic probe | Low capacitance digital probe, 8 channels. | TLP058 probe |
BNC-to-0.1 inch pin adapter to connect the logic probe to the signal source. | BNC-to-0.1 inch pin adapter; female BNC to 2x16 .01 inch pin headers. | Tektronix adapter part number 878-1429-00; to connect the Fluke 9500B to the TLP058 probe. |
Digital multimeter (DMM) | 0.1% accuracy or better | Tektronix DMM4020 |
One 50 Ω terminator | Impedance 50 Ω; connectors: female BNC input, male BNC output | Tektronix part number 011-0049-02 |
One 50 Ω BNC cable | Male-to-male connectors | Tektronix part number 012-0057-01 |
Optical mouse | USB, PS2 | Tektronix part number 119-7054-00 |
RF vector signal generator | Maximum bandwidth of instrument | Tektronix TSG4100A |
Test record
Instrument information, self test record
Model | Serial # | Procedure performed by | Date |
---|---|---|---|
|
|
|
|
Test | Passed | Failed |
---|---|---|
Self Test |
|
|
Input Impedance test record
Input Impedance | ||||
---|---|---|---|---|
Performance checks | Vertical scale | Low limit | Test result | High limit |
All models | ||||
Channel 1 Input Impedance, 1 MΩ | 100 mV/div | 990 kΩ | 1.01 MΩ | |
Channel 1 Input Impedance, 50 Ω | 10 mV/div | 49.5 Ω | 50.5 Ω | |
100 mV/div | 49.5 Ω | 50.5 Ω | ||
Channel 2 Input Impedance, 1 MΩ | 100 mV/div | 990 kΩ | 1.01 MΩ | |
Channel 2 Input Impedance, 50 Ω | 10 mV/div | 49.5 Ω | 50.5 Ω | |
100 mV/div | 49.5 Ω | 50.5 Ω | ||
Channel 3 Input Impedance, 1 MΩ | 100 mV/div | 990 kΩ | 1.01 MΩ | |
Channel 3 Input Impedance, 50 Ω | 10 mV/div | 49.5 Ω | 50.5 Ω | |
100 mV/div | 49.5 Ω | 50.5 Ω | ||
Channel 4 Input Impedance, 1 MΩ | 100 mV/div | 990 kΩ | 1.01 MΩ | |
Channel 4, Input Impedance, 50 Ω | 10 mV/div | 49.5 Ω | 50.5 Ω | |
100 mV/div | 49.5 Ω | 50.5 Ω | ||
MSO56, MSO58, MSO58LP models | ||||
Channel 5 Input Impedance, 1 MΩ | 100 mV/div | 990 kΩ | 1.01 MΩ | |
Channel 5 Input Impedance, 50 Ω | 10 mV/div | 49.5 Ω | 50.5 Ω | |
100 mV/div | 49.5 Ω | 50.5 Ω | ||
Channel 6 Input Impedance, 1 MΩ | 100 mV/div | 990 kΩ | 1.01 MΩ | |
Channel 6 Input Impedance, 50 Ω | 10 mV/div | 49.5 Ω | 50.5 Ω | |
100 mV/div | 49.5 Ω | 50.5 Ω | ||
MSO58, MSO58LP models | ||||
Channel 7 Input Impedance, 1 MΩ | 100 mV/div | 990 kΩ | 1.01 MΩ | |
Channel 7 Input Impedance, 50 Ω | 10 mV/div | 49.5 Ω | 50.5 Ω | |
100 mV/div | 49.5 Ω | 50.5 Ω | ||
Channel 8 Input Impedance, 1 MΩ | 100 mV/div | 990 kΩ | 1.01 MΩ | |
Channel 8, Input Impedance, 50 Ω | 10 mV/div | 49.5 Ω | 50.5 Ω | |
100 mV/div | 49.5 Ω | 50.5 Ω |
DC Balance test record
DC Balance | ||||
---|---|---|---|---|
Performance checks | Vertical scale | Low limit | Test result | High limit |
All models | ||||
Channel 1 DC Balance, 50 Ω, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.2 mV | 0.2 mV | ||
5 mV/div | -0.5 mV | 0.5 mV | ||
10 mV/div | -1 mV | 1 mV | ||
20 mV/div | -2 mV | 2 mV | ||
49.8 mV/div | -4.98 mV | 4.98 mV | ||
50 mV/div | -5 mV | 5 mV | ||
100 mV/div | -10 mV | 10 mV | ||
200 mV/div | -20 mV | 20 mV | ||
500 mV/div | -50 mV | 50 mV | ||
1 V/div | -100 mV | 100 mV | ||
Channel 1 DC Balance, 1 MΩ, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.4 mV | 0.4 mV | ||
5 mV/div | -1 mV | 1 mV | ||
10 mV/div | -2 mV | 2 mV | ||
20 mV/div | -4 mV | 4 mV | ||
100 mV/div | -20 mV | 20 mV | ||
500 mV/div | -100 mV | 100 mV | ||
1 V/div | -200 mV | 200 mV | ||
10 V/div | -2 V | 2 V | ||
Channel 1 DC Balance, 50 Ω, 250 MHz BW | 20 mV/div | -2 mV | 2 mV | |
Channel 1 DC Balance, 1 MΩ, 250 MHz BW | 20 mV/div | -4 mV | 4 mV | |
Channel 1 DC Balance, 50 Ω, Full BW | 20 mV/div | -2 mV | 2 mV | |
Channel 1 DC Balance, 1 MΩ, Full BW | 20 mV/div | -4 mV | 4 mV | |
Channel 2 DC Balance, 50 Ω, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.2 mV | 0.2 mV | ||
5 mV/div | -0.5 mV | 0.5 mV | ||
10 mV/div | -1 mV | 1 mV | ||
20 mV/div | -2 mV | 2 mV | ||
49.8 mV/div | -4.98 mV | 4.98 mV | ||
50 mV/div | -5 mV | 5 mV | ||
100 mV/div | -10 mV | 10 mV | ||
200 mV/div | -20 mV | 20 mV | ||
500 mV/div | -50 mV | 50 mV | ||
1 V/div | -100 mV | 100 mV | ||
Channel 2 DC Balance, 1 MΩ, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.4 mV | 0.4 mV | ||
5 mV/div | -1 mV | 1 mV | ||
10 mV/div | -2 mV | 2 mV | ||
20 mV/div | -4 mV | 4 mV | ||
100 mV/div | -20 mV | 20 mV | ||
500 mV/div | -100 mV | 100 mV | ||
1 V/div | -200 mV | 200 mV | ||
10 V/div | -2 V | 2 V | ||
Channel 2 DC Balance, 50 Ω, 250 MHz BW | 20 mV/div | -2 mV | 2 mV | |
Channel 2 DC Balance, 1 MΩ, 250 MHz BW | 20 mV/div | -4 mV | 4 mV | |
Channel 2 DC Balance, 50 Ω, Full BW | 20 mV/div | -2 mV | 2 mV | |
Channel 2 DC Balance, 1 MΩ, Full BW | 20 mV/div | -4 mV | 4 mV | |
Channel 3 DC Balance, 50 Ω, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.2 mV | 0.2 mV | ||
5 mV/div | -0.5 mV | 0.5 mV | ||
10 mV/div | -1 mV | 1 mV | ||
20 mV/div | -2 mV | 2 mV | ||
49.8 mV/div | -4.98 mV | 4.98 mV | ||
50 mV/div | -5 mV | 5 mV | ||
100 mV/div | -10 mV | 10 mV | ||
200 mV/div | -20 mV | 20 mV | ||
500 mV/div | -50 mV | 50 mV | ||
1 V/div | -100 mV | 100 mV | ||
Channel 3 DC Balance, 1 MΩ, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.4 mV | 0.4 mV | ||
5 mV/div | -1 mV | 1 mV | ||
10 mV/div | -2 mV | 2 mV | ||
20 mV/div | -4 mV | 4 mV | ||
100 mV/div | -20 mV | 20 mV | ||
500 mV/div | -100 mV | 100 mV | ||
1 V/div | -200 mV | 200 mV | ||
10 V/div | -2 V | 2 V | ||
Channel 3 DC Balance, 50 Ω, 250 MHz BW | 20 mV/div | -2 mV | 2 mV | |
Channel 3 DC Balance, 1 MΩ, 250 MHz BW | 20 mV/div | -4 mV | 4 mV | |
Channel 3 DC Balance, 50 Ω, Full BW | 20 mV/div | -2 mV | 2 mV | |
Channel 3 DC Balance, 1 MΩ, Full BW | 20 mV/div | -4 mV | 4 mV | |
Channel 4 DC Balance, 50 Ω, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.2 mV | 0.2 mV | ||
5 mV/div | -0.5 mV | 0.5 mV | ||
10 mV/div | -1 mV | 1 mV | ||
20 mV/div | -2 mV | 2 mV | ||
49.8 mV/div | -4.98 mV | 4.98 mV | ||
50 mV/div | -5 mV | 5 mV | ||
100 mV/div | -10 mV | 10 mV | ||
200 mV/div | -20 mV | 20 mV | ||
500 mV/div | -50 mV | 50 mV | ||
1 V/div | -100 mV | 100 mV | ||
Channel 4 DC Balance, 1 MΩ, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.4 mV | 0.4 mV | ||
5 mV/div | -1 mV | 1 mV | ||
10 mV/div | -2 mV | 2 mV | ||
20 mV/div | -4 mV | 4 mV | ||
100 mV/div | -20 mV | 20 mV | ||
500 mV/div | -100 mV | 100 mV | ||
1 V/div | -200 mV | 200 mV | ||
10 V/div | -2 V | 2 V | ||
Channel 4 DC Balance, 50 Ω, 250 MHz BW | 20 mV/div | -2 mV | 2 mV | |
Channel 4 DC Balance, 1 MΩ, 250 MHz BW | 20 mV/div | -4 mV | 4 mV | |
Channel 4 DC Balance, 50 Ω, Full BW | 20 mV/div | -2 mV | 2 mV | |
Channel 4 DC Balance, 1 MΩ, Full BW | 20 mV/div | -4 mV | 4 mV | |
MSO56, MSO58, MSO58LP models | ||||
Channel 5 DC Balance, 50 Ω, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.2 mV | 0.2 mV | ||
5 mV/div | -0.5 mV | 0.5 mV | ||
10 mV/div | -1 mV | 1 mV | ||
20 mV/div | -2 mV | 2 mV | ||
49.8 mV | -4.98 mV/div | 4.98 mV | ||
50 mV/div | -5 mV | 5 mV | ||
100 mV/div | -10 mV | 10 mV | ||
200 mV/div | -20 mV | 20 mV | ||
500 mV/div | -50 mV | 50 mV | ||
1 V/div | -100 mV | 100 mV | ||
Channel 5 DC Balance, 1 MΩ, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.4 mV | 0.4 mV | ||
5 mV/div | -1 mV | 1 mV | ||
10 mV/div | -2 mV | 2 mV | ||
20 mV/div | -4 mV | 4 mV | ||
100 mV/div | -20 mV | 20 mV | ||
500 mV/div | -100 mV | 100 mV | ||
1 V/div | -200 mV | 200 mV | ||
10 V/div | -2 V | 2 V | ||
Channel 5 DC Balance, 50 Ω, 250 MHz BW | 20 mV/div | -2 mV | 2 mV | |
Channel 5 DC Balance, 1 MΩ, 250 MHz BW | 20 mV/div | -4 mV | 4 mV | |
Channel 5 DC Balance, 50 Ω, Full BW | 20 mV/div | -2 mV | 2 mV | |
Channel 5 DC Balance, 1 MΩ, Full BW | 20 mV/div | -4 mV | 4 mV | |
Channel 6 DC Balance, 50 Ω, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.2 mV | 0.2 mV | ||
5 mV/div | -0.5 mV | 0.5 mV | ||
10 mV/div | -1 mV | 1 mV | ||
20 mV/div | -2 mV | 2 mV | ||
49.8 mV/div | -4.98 mV | 4.98 mV | ||
50 mV/div | -5 mV | 5 mV | ||
100 mV/div | -10 mV | 10 mV | ||
200 mV/div | -20 mV | 20 mV | ||
500 mV/div | -50 mV | 50 mV | ||
1 V/div | -100 mV | 100 mV | ||
Channel 6 DC Balance, 1 MΩ, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.4 mV | 0.4 mV | ||
5 mV/div | -1 mV | 1 mV | ||
10 mV/div | -2 mV | 2 mV | ||
20 mV/div | -4 mV | 4 mV | ||
100 mV/div | -20 mV | 20 mV | ||
500 mV/div | -100 mV | 100 mV | ||
1 V/div | -200 mV | 200 mV | ||
10 V/div | -2 V | 2 V | ||
Channel 6 DC Balance, 50 Ω, 250 MHz BW | 20 mV/div | -2 mV | 2 mV | |
Channel 6 DC Balance, 1 MΩ, 250 MHz BW | 20 mV/div | -4 mV | 4 mV | |
Channel 6 DC Balance, 50 Ω, Full BW | 20 mV/div | -2 mV | 2 mV | |
Channel 6 DC Balance, 1 MΩ, Full BW | 20 mV/div | -4 mV | 4 mV | |
MSO58, MSO58LP models | ||||
Channel 7 DC Balance, 50 Ω, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.2 mV | 0.2 mV | ||
5 mV/div | -0.5 mV | 0.5 mV | ||
10 mV/div | -1 mV | 1 mV | ||
20 mV/div | -2 mV | 2 mV | ||
49.8 mV/div | -4.98 mV | 4.98 mV | ||
50 mV/div | -5 mV | 5 mV | ||
100 mV/div | -10 mV | 10 mV | ||
200 mV/div | -20 mV | 20 mV | ||
500 mV/div | -50 mV | 50 mV | ||
1 V/div | -100 mV | 100 mV | ||
Channel 7 DC Balance, 1 MΩ, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.4 mV | 0.4 mV | ||
5 mV/div | -1 mV | 1 mV | ||
10 mV/div | -2 mV | 2 mV | ||
20 mV/div | -4 mV | 4 mV | ||
100 mV/div | -20 mV | 20 mV | ||
500 mV/div | -100 mV | 100 mV | ||
1 V/div | -200 mV | 200 mV | ||
10 V/div | -2 V | 2 V | ||
Channel 7 DC Balance, 50 Ω, 250 MHz BW | 20 mV/div | -2 mV | 2 mV | |
Channel 7 DC Balance, 1 MΩ, 250 MHz BW | 20 mV/div | -4 mV | 4 mV | |
Channel 7 DC Balance, 50 Ω, Full BW | 20 mV/div | -2 mV | 2 mV | |
Channel 7 DC Balance, 1 MΩ, Full BW | 20 mV/div | -4 mV | 4 mV | |
Channel 8 DC Balance, 50 Ω, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.2 mV | 0.2 mV | ||
5 mV/div | -0.5 mV | 0.5 mV | ||
10 mV/div | -1 mV | 1 mV | ||
20 mV/div | -2 mV | 2 mV | ||
49.8 mV/div | -4.98 mV | 4.98 mV | ||
50 mV/div | -5 mV | 5 mV | ||
100 mV/div | -10 mV | 10 mV | ||
200 mV/div | -20 mV | 20 mV | ||
500 mV/div | -50 mV | 50 mV | ||
1 V/div | -100 mV | 100 mV | ||
Channel 8 DC Balance, 1 MΩ, 20 MHz BW | 1 mV/div | -0.2 mV | 0.2 mV | |
2 mV/div | -0.4 mV | 0.4 mV | ||
5 mV/div | -1 mV | 1 mV | ||
10 mV/div | -2 mV | 2 mV | ||
20 mV/div | -4 mV | 4 mV | ||
100 mV/div | -20 mV | 20 mV | ||
500 mV/div | -100 mV | 100 mV | ||
1 V/div | -200 mV | 200 mV | ||
10 V/div | -2 V | 2 V | ||
Channel 8 DC Balance, 50 Ω, 250 MHz BW | 20 mV/div | -2 mV | 2 mV | |
Channel 8 DC Balance, 1 MΩ, 250 MHz BW | 20 mV/div | -4 mV | 4 mV | |
Channel 8 DC Balance, 50 Ω, Full BW | 20 mV/div | -2 mV | 2 mV | |
Channel 8 DC Balance, 1 MΩ, Full BW | 20 mV/div | -4 mV | 4 mV |
DC Gain Accuracy test record
DC Gain Accuracy, 2 GHz models | |||||
---|---|---|---|---|---|
Performance checks | Bandwidth | Vertical scale | Low limit | Test result | High limit |
Channel 1 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1.2% | 1.2% | |||
5 mV/div | -1.2% | 1.2% | |||
10 mV/div | -1.2% | 1.2% | |||
20 mV/div | -1.2% | 1.2% | |||
50 mV/div | -1.2% | 1.2% | |||
100 mV/div | -1.2% | 1.2% | |||
200 mV/div | -1.2% | 1.2% | |||
500 mV/div | -1.2% | 1.2% | |||
1 V/div | -1.2% | 1.2% | |||
250 MHz | 20 mV/div | -1.2% | 1.2% | ||
FULL | 20 mV/div | -1.2% | 1.2% | ||
Channel 1 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 2 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1.2% | 1.2% | |||
5 mV/div | -1.2% | 1.2% | |||
10 mV/div | -1.2% | 1.2% | |||
20 mV/div | -1.2% | 1.2% | |||
50 mV/div | -1.2% | 1.2% | |||
100 mV/div | -1.2% | 1.2% | |||
200 mV/div | -1.2% | 1.2% | |||
500 mV/div | -1.2% | 1.2% | |||
1 V/div | -1.2% | 1.2% | |||
250 MHz | 20 mV/div | -1.2% | 1.2% | ||
FULL | 20 mV/div | -1.2% | 1.2% | ||
Channel 2 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
50 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 3 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1.2% | 1.2% | |||
5 mV/div | -1.2% | 1.2% | |||
10 mV/div | -1.2% | 1.2% | |||
20 mV/div | -1.2% | 1.2% | |||
50 mV/div | -1.2% | 1.2% | |||
100 mV/div | -1.2% | 1.2% | |||
200 mV/div | -1.2% | 1.2% | |||
500 mV/div | --1.2% | 1.2% | |||
1 V/div | --1.2% | 1.2% | |||
250 MHz | 20 mV/div | -1.2% | 1.2% | ||
FULL | 20 mV/div | -1.2% | 1.2% | ||
Channel 3 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 4 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1.2% | 1.2% | |||
5 mV/div | -1.2% | 1.2% | |||
10 mV/div | -1.2% | 1.2% | |||
20 mV/div | -1.2% | 1.2% | |||
50 mV/div | -1.2% | 1.2% | |||
100 mV/div | -1.2% | 1.2% | |||
200 mV/div | -1.2% | 1.2% | |||
500 mV/div | -1.2% | 1.2% | |||
1 V/div | -1.2% | 1.2% | |||
250 MHz | 20 mV/div | -1.2% | 1.2% | ||
FULL | 20 mV/div | -1.2% | 1.2% | ||
Channel 4 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
MSO56 and MSO58 models | |||||
Channel 5 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1.2% | 1.2% | |||
5 mV/div | -1.2% | 1.2% | |||
10 mV/div | -1.2% | 1.2% | |||
20 mV/div | -1.2% | 1.2% | |||
50 mV/div | -1.2% | 1.2% | |||
100 mV/div | -1.2% | 1.2% | |||
200 mV/div | -1.2% | 1.2% | |||
500 mV/div | -1.2% | 1.2% | |||
1 V/div | -1.2% | 1.2% | |||
250 MHz | 20 mV/div | -1.2% | 1.2% | ||
FULL | 20 mV/div | -1.2% | 1.2% | ||
Channel 5 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 6 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1.2% | 1.2% | |||
5 mV/div | -1.2% | 1.2% | |||
10 mV/div | -1.2% | 1.2% | |||
20 mV/div | -1.2% | 1.2% | |||
50 mV/div | -1.2% | 1.2% | |||
100 mV/div | -1.2% | 1.2% | |||
200 mV/div | -1.2% | 1.2% | |||
500 mV/div | -1.2% | 1.2% | |||
1 V/div | -1.2% | 1.2% | |||
250 MHz | 20 mV/div | -1.2% | 1.2% | ||
FULL | 20 mV/div | -1.2% | 1.2% | ||
Channel 6 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
MSO58 models | |||||
Channel 7 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1.2% | 1.2% | |||
5 mV/div | -1.2% | 1.2% | |||
10 mV/div | -1.2% | 1.2% | |||
20 mV/div | -1.2% | 1.2% | |||
50 mV/div | -1.2% | 1.2% | |||
100 mV/div | -1.2% | 1.2% | |||
200 mV/div | -1.2% | 1.2% | |||
500 mV/div | -1.2% | 1.2% | |||
1 V/div | -1.2% | 1.2% | |||
250 MHz | 20 mV/div | -1.2% | 1.2% | ||
FULL | 20 mV/div | -1.2% | 1.2% | ||
Channel 7 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 8 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1.2% | 1.2% | |||
5 mV/div | -1.2% | 1.2% | |||
10 mV/div | -1.2% | 1.2% | |||
20 mV/div | -1.2% | 1.2% | |||
50 mV/div | -1.2% | 1.2% | |||
100 mV/div | -1.2% | 1.2% | |||
200 mV/div | -1.2% | 1.2% | |||
500 mV/div | -1.2% | 1.2% | |||
1 V/div | -1.2% | 1.2% | |||
250 MHz | 20 mV/div | -1.2% | 1.2% | ||
FULL | 20 mV/div | -1.2% | 1.2% | ||
Channel 8 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% |
DC Gain Accuracy, < 2 GHz models, MSO58LP | |||||
---|---|---|---|---|---|
Performance checks | Bandwidth | Vertical scale | Low limit | Test result | High limit |
All models < 2 GHz, MSO58LP | |||||
Channel 1 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 1 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 2 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 2 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 3 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 3 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 4 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 4 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
MSO56 and MSO58 models < 2 GHz, MSO58LP | |||||
Channel 5 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
1 mV/div | -1% | 1% | |||
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 5 DC Gain Accuracy, 0 V offset, 0 V vertical position, 1 MΩ | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||
500 mV/div | -1% | 1% | |||
1 V/div | -1% | 1% | |||
250 MHz | 20 mV/div | -1% | 1% | ||
FULL | 20 mV/div | -1% | 1% | ||
Channel 6 DC Gain Accuracy, 0 V offset, 0 V vertical position, 50 Ω | 20 MHz | 1 mV/div | -2% | 2% | |
2 mV/div | -1% | 1% | |||
5 mV/div | -1% | 1% | |||
10 mV/div | -1% | 1% | |||
20 mV/div | -1% | 1% | |||
50 mV/div | -1% | 1% | |||
100 mV/div | -1% | 1% | |||
200 mV/div | -1% | 1% | |||