연락처

텍트로닉스 담당자와 실시간 상담 6:00am-4:30pm PST에 이용 가능

전화

전화 문의

9:00am-6:00PM KST에 이용 가능

다운로드

매뉴얼, 데이터 시트, 소프트웨어 등을 다운로드할 수 있습니다.

다운로드 유형
모델 또는 키워드

피드백

How do I build a crosstalk model with IConnect?

질문:

How do I build a crosstalk model with IConnect?

답변:

The victim's near end noise (NEXT) is dominated by the even and odd impedance difference, and the victim's far end noise (FEXT) is directly proportional to the odd and even time delay difference. Therefore, when the crosstalk model is considered, it is important to obtain a good correlation between even and odd time delays and impedances. The best suitable models for this condition are distributed four-line coupled and symmetric coupled lossy line models.

To model the crosstalk, the differential fully coupled model, similar to the one shown in Figure 1, is built first, and then we change the probing setup to measure the crosstalk values (Figure 2). The IConnect partitioning in the distributed four-line coupled model should take into account the time delay difference; otherwise the FEXT model will underestimate the induced voltage. When the desired correlation between the even and odd impedances and time delays is obtained, the differential model could be could easily be converted to a single-ended one by replacing the PWL source on the “victim” with the source probe set to zero volts. IConnect simulation of this setup will produce four waveforms where the reflected waveform of the probe port will give NEXT value, and the waveform transmitted from the same port will give FEXT.
figure 1

Figure 1. Fully coupled differential model topology.
figure 2

Figure 2. Crosstalk model. An ideal probe to measure the crosstalk replaced one of the PWL sources.


이 FAQ는 다음에 적용 됩니다:

제품 시리즈 없음

제품:

FAQ ID 56526

모든 FAQ 보기 »