Media Analysis Solution for Hybrid IP/SDI Infrastructure

PRISM Datasheet

PRISM provides flexible options and field-installable upgrades to monitor a diverse variety of IP statistics as well as video and audio content. The comprehensive feature set, along with an intuitive and simplified graphical presentation of IP statistics, including video quality and diagnostic information, enables engineers to ensure the delivery of superior Quality of Service (QoS) levels in an increasingly complex broadcast environment through SDI/IP signal paths. PRISM is an ideal solution for monitoring SDI/IP hybrid environments including master control rooms, production studios, OB vans, and signal contribution/distribution centers.

Features and benefits

- A comprehensive analysis and monitoring tool for a hybrid IP/SDI broadcast systems that provides system evaluation for long term system quality monitoring and reporting
- Real time IP/SDI analysis and monitoring to quickly identify the issue to determine the root cause
- Graphical displays that show the traffic present in the 10G Ethernet link, allowing engineers to understand what is on their network and to easily select the stream of interest
- Select a stream to view and monitor the content using the Picture, Waveform, and Audio applications, and listen to audio with headphones for conformance monitoring
- Detect IP packet errors, monitor the packet inter arrival time (PIT) and time stamped delay factor (TS-DF) to allow engineers to observe issues that may cause intermittent loss of Video, Audio or Data
- Analysis tools coupled with historical data give engineers the ability to understand and resolve complex and intermittent problems quickly
- Monitor PTP trend graphs to ensure proper sync system setup for a robust IP system

- Tektronix patented Timing display showing the relative timing of the input signal and PTP reference that makes facility timing easy
- 1 PPS output when the instrument is locked to a PTP reference
- Simultaneous two paths monitoring to ensure proper SMPTE 2022-7 redundant system operation
- API to control PRISM from system management software
- Multipoint or remote site monitoring allowing one engineer to quickly respond to issues from multiple points in the system
- Build an extensive monitoring solution with the SDI signal decoded from SMPTE 2022-6 streams reconstructed from streams compliant to SMPTE 2022-7
- 10GE line rate packet capture for offline analysis
- The Picture application provides a full HD, 9-inch screen that can be used for confidence monitoring
- Two-tile display mode that maximizes trace visibility
- Up to 12Gbs SDI eye-pattern/jitter demodulated waveform display with automatic eye-pattern measurements including eye amplitude, rise/fall time, and overshoot/undershoot measurements as well as jitter measurement
- All-in-one instrument using a 3RU half-rack platform (MPI) or a 1RU full-rack platform (MPX) that can be used for either portable or rack mount applications
PRISM Datasheet

Identify the streams in a 10G Ethernet link to set up the system properly

Engineers designing and evaluating a hybrid IP/SDI broadcast system face challenges in determining the status of the system they are building. While an SDI coax system typically carries one signal, a 10G Ethernet link can carry multiple streams and it can be difficult to determine what content is carried on each of the streams within a IP based broadcast system.

PRISM offers a range of tools to quickly identify the streams in the 10G Ethernet link and the content in each stream. The IP Status application shows the source IP address and port number, destination IP address and port number, and protocol of all streams available in an incoming 10G Ethernet link.

Monitor and verify PTP system setup to ensure genlock of equipment in the facility

In a hybrid IP/SDI broadcast system, a variety of reference signals may be used to synchronize equipment within the facility. Traditionally, black burst (BB) or tri-level sync (TLS) references have been used for this purpose. For IP networks, PTP (IEEE1588) is used for system synchronization.

PTP uses mechanisms for accurate synchronization, higher system robustness and further flexibility in the system integration. For example, the Best Master Clock Algorithm (BMCA) is used to determine the grandmaster. Another example is the communication model to choose the message transport model to convey the time stamps. However, those mechanisms work as designed only when engineers have set up the system correctly.

In the IP Status application, PRISM displays the PTP traffic available in the 10G Ethernet link to let users quickly check for the presence of PTP messages. The PTP tab in the IP Session application provides the lock status, including the phase lag to the grandmaster, and interpretation of the PTP metadata within the Announce Message. The PTP metadata includes the Master ID, PTP time in UTC and master characteristics (clock quality, priority, etc.) to let the engineer ensure the setting of the PTP system is correct.

Identify the streams in a 10G Ethernet link to set up the system properly

An engineer can view further details using the Video tab in the IP Session application, which shows the RTP header information in the selected ST2022-6 stream including High Bit Rate Media header information with Green / Red LED error status. The status LED on an application tab indicates the aggregated error status for the monitored items under that tab.

An engineer can determine the number of streams available on the link as well as the quality level of each stream. A selected stream can be decoded to the Picture application to let the engineer verify the content in the stream, and can also be output through the AUX SDI output with IP/SDI conversion for the extensive monitoring solution.

Monitor and verify PTP system setup to ensure genlock of equipment in the facility

In the PTP Graphs application, PRISM plots the network delay and network delay variation. The network delay and network delay variation plots are available for both signal directions on the network, Master to Slave (Tms) and Slave to Master (Tsm). The network delay values are calculated directly from the PTP message time stamps, while the variation numbers are calculated from the delay as per RFC1889. The phase lag is the filtered difference Tsm-Tms, and is used to adjust the local PTP clock. Therefore, as PRISM locks to the PTP master unit, it will adjust to minimize the phase lag and make Tsm and Tms equal.

The PTP graphs show the effects of both network delay and adjustments to the slave unit timing. However, since the contribution from the adjustment is low after establishing a lock to the PTP master unit, the PTP network delay becomes dominant in the graphs.

In the ideal PTP system, Tms / Tsm network delay should be constant and identical. The variations in real applications, however, may impact the PTP lock process in the slave unit and could cause a PTP unlock situation if they are excessive.
The PTP graphs allow the detection of adverse network conditions, such as too much traffic on the PTP ports.

Facility timing made easy

The importance of timing adjustment in an IP broadcast facility is unchanged. As the alignment mechanism uses the timestamp in the streams, correct time stamping at the source device is important. The variance of transmission time at the mixing point, such as a production switcher, needs to be less than the buffer size chosen for the minimum latency.

The Tektronix-patented Timing application makes facility timing easy through a simple graphical representation, which shows the relative timing of the SMPTE 2022-6 stream and the PTP reference on an X-Y axis and visualizes the one-dimensional time delay in terms of the picture parameters. This allows timing adjustment in units of lines and microseconds.

One use for the Timing application is to measure the delay in a gateway and network. If a properly timed SDI signal is applied to a gateway, then the timing measurement on the resulting IP flow will display the combined latency in the gateway and the network. Another use is to measure multiple signals and compare the relative timing.

Monitor the quality level to keep the facility on air

The asynchronous nature of an IP system can produce a wide variety of bandwidth usage; in extreme cases this can result in the loss of packets. Therefore it is important to be able to monitor the network traffic and engineers need tools to evaluate packet loss.

PRISM provides a Packet Interval Time (PIT) histogram and trend graph as well as the trend graph of Time Stamped Delay Factor (TS-DF) standardized in EBU-TECH 3337 to help engineers determine how the packet interarrival time from a sender is affected in the system. These measurements can help engineers determine the root cause when packet loss has occurred.

Path 1 and Path 2 timing against the PTP reference.

Since ST 2022-6 streams are complete SDI signals encapsulated in IP, the timing measurement treats these IP signals as if they were SDI. Therefore, the timing system detects the start of the IP frame, and then extrapolates to the 0h point of the encapsulated SDI. Then using PTP as the reference, the ideal alignment point for that frame rate is calculated based on the PTP epoch. Finally, the offset between the ST 2022-6 signal and the ideal alignment is displayed. The display shows both the absolute time and the time parsed into lines or horizontal delay as time and pixels.
TS-DF trend graph for monitoring the trend of TS-DF variance over time.

Debug a hybrid IP/SDI broadcast system to isolate the root cause

Engineers debugging a hybrid IP/SDI system first need to isolate the root cause of the error to find whether the error is in the IP layer or in the content layer. Details of the error can then be determined by examining the identified layer. PRISM offers error detection feature sets in both the IP and content layers using the Event Log application.

The graphical displays show the error trend correlated to historical data. In these displays, the errors detected in both IP and content layers are time correlated, which allows the engineer to verify the error in the IP or content layer. For example, if an error is detected in the content layer but not in the IP layer, then the error may have happened before the content was wrapped by the IP headers.

RTP Sequence Error incident graph for monitoring the errors detected over time.

SMPTE 2022-7 monitoring for robust IP broadcast operation

For broadcasters that are committed to their clients, ensuring 24/7 quality broadcasting is a minimum requirement. SMPTE 2022-7 was standardized to build and operate a redundant IP system for broadcasters. PRISM provides the broadcast engineers a monitoring solution to properly setup the redundant system.

When an input configured with SMPTE 2022-7 enabled is selected, the difference in the receive time of datagrams on path number 1 / 2 is monitored to help engineers determine the signal path and buffer setting in the receiver. PRISM also offers packet header interpretation and error detection for the two paths simultaneously.

The reconstructed output stream is fed to the content layer applications, such as Picture and Waveform, and to the AUX SDI output.

Path 1 – Path 2 Delay graph. A positive number indicates that Path 2 arrived first and a negative number indicates that Path 1 arrived first.

Monitor the quality of content with familiar feature sets

In any broadcasting system, ensuring the quality of Video and Audio is the most important task for broadcast engineers. The Picture, Waveform, Audio and Video Session applications are available for engineers who need the familiar feature sets to instantly check the quality of content.

Picture, Waveform, Audio, and Video Session applications provide content conformance monitoring tools.
Operate PRISM remotely to provide immediate facility assistance

Within a hybrid IP/SDI facility, there are a wide variety of tasks an engineer needs to perform to troubleshoot issues. One such task is to quickly provide assistance to an operator to help meet a deadline for production or to keep the facility on-air. The remote control feature in PRISM allows the engineer to remotely access the unit with a Web browser application running on a PC or tablet computer. This allows the engineer to immediately provide assistance by starting to diagnose the problem from their desk, minimizing down time, and helping to isolate the cause of the problem.

Remote monitoring using a Web browser.

Control PRISM from system management software

Operators in SDI facilities have used SDI router control panels to select the SDI source to monitor on a waveform monitor. In an SDI/IP hybrid facility, the system integrators prepare the same capability for the operators. This requires system management software to send commands to end point equipment so they can subscribe to streams through IGMP V3.

The PRISM API allows system integrators to build an IP system with PRISM being managed by system management software. The API enables operators to remotely configure inputs and to select the active input.

Example API commands

<table>
<thead>
<tr>
<th>Function</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>/api/configureInput</td>
<td>GET</td>
</tr>
<tr>
<td>/api/configureInput</td>
<td>POST</td>
</tr>
<tr>
<td>/api/activeInput</td>
<td>GET</td>
</tr>
<tr>
<td>/api/activeInput</td>
<td>POST</td>
</tr>
<tr>
<td>/api/help</td>
<td>GET</td>
</tr>
</tbody>
</table>

Easy offline analysis with 10G Ethernet packet capture

When engineers require detailed analysis with an offline tool, the IP capture feature in PRISM allows them to quickly access the stream they need to analyze. The 2 GB capture capability can create a pcap file of up to 1.6 seconds at 10 Gbps.

Capture settings menu.

Flexible installation options

PRISM offers two platform options: 3RU half-rack width (MPI) and 1RU full-rack width (MPX). The MPI platform with the optional portable cabinet allows users to move the unit between different locations. The MPI platform with the optional rack mount kits allows users to install the unit in an equipment rack.

The MPX platform is intended for applications where space in an equipment rack needs to be minimized, for applications where an external touch panel display is going to be used, for KVM operation or for applications where remote monitoring is preferred.
Supported formats

Supported IP formats

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPTE 2022-6, SMPTE 2022-7</td>
<td></td>
<td>MP-IP-STD</td>
</tr>
<tr>
<td>SMPTE 2110-20, SMPTE 2110-30 (Preliminary)</td>
<td></td>
<td>MP-IP-STD</td>
</tr>
<tr>
<td>ASPEN (video content only)</td>
<td>SMPTE RDD-37</td>
<td>MP-IP-STD</td>
</tr>
<tr>
<td>PTP</td>
<td>IEEE1588, SMPTE2059-2 (Multicast, Mixed SMPTE w/o negotiation)</td>
<td>MP-IP-STD</td>
</tr>
</tbody>
</table>

Supported SDI formats

<table>
<thead>
<tr>
<th>Link</th>
<th>Format</th>
<th>Sample Structure</th>
<th>Bits</th>
<th>Frame/field rate</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-SDI</td>
<td>525i</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>59.94</td>
</tr>
<tr>
<td></td>
<td>625i</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50</td>
</tr>
<tr>
<td>HD-SDI</td>
<td>1920x1080</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60i</td>
</tr>
<tr>
<td></td>
<td>1280x720</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
<tr>
<td>3G-SDI Level A</td>
<td>1920x1080</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
<tr>
<td>3G-SDI Level B</td>
<td>1920x1080</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
<tr>
<td>Quad Link 3G-SDI Level A, Square Division</td>
<td>3840x2160</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
<tr>
<td>Quad Link 3G-SDI Level B, Square Division</td>
<td>3840x2160</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
<tr>
<td>Quad Link 3G-SDI Level A, Two Sample Interleave</td>
<td>3840x2160</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
<tr>
<td>Quad Link 3G-SDI Level B, Two Sample Interleave</td>
<td>3840x2160</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
<tr>
<td>12G-SDI</td>
<td>3840x2160</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
</tbody>
</table>

Supported video formats in SMPTE 2022-6 streams

<table>
<thead>
<tr>
<th>Link</th>
<th>Format</th>
<th>Sample Structure</th>
<th>Bits</th>
<th>Frame/field rate</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-SDI</td>
<td>525i</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>59.94</td>
</tr>
<tr>
<td></td>
<td>625i</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50</td>
</tr>
<tr>
<td>HD-SDI</td>
<td>1920x1080</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60i</td>
</tr>
<tr>
<td></td>
<td>1280x720</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
<tr>
<td>3G-SDI Level A</td>
<td>1920x1080</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
<tr>
<td>3G-SDI Level B</td>
<td>1920x1080</td>
<td>4:2:2</td>
<td>YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
</tr>
</tbody>
</table>

1 No AUX SDI output is available for this format.
Supported video formats in SMPTE 2110-20 streams (Preliminary)

<table>
<thead>
<tr>
<th>Link</th>
<th>Format</th>
<th>Sample Structure</th>
<th>Bits</th>
<th>Frame/field rate</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST2110-20</td>
<td>1920x1080</td>
<td>4:2:2 YCbCr</td>
<td>10b</td>
<td>50/59.94/60i</td>
<td>MP-IP-STD</td>
</tr>
<tr>
<td></td>
<td>1280x720</td>
<td>4:2:2 YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
<td>MP-IP-STD</td>
</tr>
<tr>
<td></td>
<td>1920x1080</td>
<td>4:2:2 YCbCr</td>
<td>10b</td>
<td>50/59.94/60p</td>
<td>MP-IP-STD</td>
</tr>
</tbody>
</table>

Supported video formats in ASPEN video

<table>
<thead>
<tr>
<th>Link</th>
<th>Format</th>
<th>Sample Structure</th>
<th>Bits</th>
<th>Frame/field rate</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPEN</td>
<td>1920x1080</td>
<td>4:2:2 YCbCr</td>
<td>10b</td>
<td>50/59.94/60i</td>
<td>MP-IP-STD</td>
</tr>
</tbody>
</table>
Specifications

All specifications apply to all models unless noted otherwise.

MPI power characteristics

Power consumption

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>100 W</td>
</tr>
<tr>
<td>Maximum</td>
<td>200 W</td>
</tr>
</tbody>
</table>

Voltage range

100 to 240 VAC ±10%, 50/60 Hz

MPI physical characteristics

Dimensions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (at bezel)</td>
<td>13.34 cm (5.25 in.)</td>
</tr>
<tr>
<td>Width (at bezel)</td>
<td>21.91 cm (8.625 in.)</td>
</tr>
<tr>
<td>Depth</td>
<td>30.48 cm (12.00 in.)</td>
</tr>
</tbody>
</table>

Weight (net)

3.4 kg (7.45 lbs.)

MPX power characteristics

Power consumption

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>100 W</td>
</tr>
<tr>
<td>Maximum</td>
<td>200 W</td>
</tr>
</tbody>
</table>

Voltage range

100 to 240 VAC ±10%, 50/60 Hz

MPX physical characteristics

Dimensions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>4.45 cm (1.75 in.)</td>
</tr>
<tr>
<td>Width</td>
<td>48.26 cm (19.00 in.)</td>
</tr>
<tr>
<td>Depth</td>
<td>45.72 cm (18.00 in.)</td>
</tr>
</tbody>
</table>

Weight (net)

3.9 kg (8.7 lbs.)
Ordering information

Models

MPI
PRISM Media platform; 3RU half rack with integrated 9 inch HD display and touch panel; 4 SDI Inputs (SD, HD and 3G-SDI)

MPX
PRISM Media platform; 1RU Full rack; 4 SDI Inputs (SD, HD and 3G-SDI)

Options

Hardware options

PHY-12G
Add SDI Physical Layer Measurement Package; includes automated measurement of 12G/3G/HD/SD-SDI Eye pattern parameters; (Option MP-FMT-4K required for 12G support)

MPX RACK
Add rack mount slides and rails kit for MPX

Software options

MP-IP-STD
Add node locked license for SMPTE 2022-6/7 and PTP (IEEE1588, SMPTE 2059-2) support; includes IP Status application

MP-IP-MEAS
Add node locked license for IP Measurement feature sets: IP Graph, IP/PTP Session, and IP PIT Histogram applications (Option MP-IP-STD required)

MP-IP-CAP
Add node locked license for IP stream capture (Option MP-IP-MEAS required)

MP-FMT-4K
Enable 12G-SDI, add node locked license for 4K formats

MP-PROD
Add node locked license for Production Tools (Stop display, 3D LUT function)

International power plugs

Opt. A0
North America power plug (115 V, 60 Hz)

Opt. A1
Universal Euro power plug (220 V, 50 Hz)

Opt. A2
United Kingdom power plug (240 V, 50 Hz)

Opt. A3
Australia power plug (240 V, 50 Hz)

Opt. A5
Switzerland power plug (220 V, 50 Hz)

Opt. A6
Japan power plug (100 V, 50/60 Hz)

Opt. A10
China power plug (50 Hz)

Opt. A11
India power plug (50 Hz)

Opt. A12
Brazil power plug (60 Hz)

Opt. A99
No power cord
Service options

- Opt. C3: Calibration Service 3 Years
- Opt. C5: Calibration Service 5 Years
- Opt. D1: Calibration Data Report
- Opt. G3: Complete Care 3 Years (includes loaner, scheduled calibration, and more)
- Opt. G5: Complete Care 5 Years (includes loaner, scheduled calibration, and more)
- Opt. R3: Repair Service 3 Years (including warranty)
- Opt. R3DW: Repair Service Coverage 3 Years (includes product warranty period). 3-year period starts at time of instrument purchase
- Opt. R5: Repair Service 5 Years (including warranty)
- Opt. R5DW: Repair Service Coverage 5 Years (includes product warranty period). 5-year period starts at time of instrument purchase

Post purchase upgrades

- MPI-UP PHY-12G: Add SDI Physical Layer Measurement Package to the MPI product; includes automated measurement of 12G/3G/HD/SD-SDI Eye pattern parameters; (Option MP-FMT-4K required for 12G support)
- MPX-UP PHY-12G: Add SDI Physical Layer Measurement Package to the MPX product; includes automated measurement of 12G/3G/HD/SD-SDI Eye pattern parameters; (Option MP-FMT-4K required for 12G support)
- MPX-UP RACK: Add rack mount slides and rails kit for MPX unit
- MP-IP-STD-UP: Add node locked license for SMPTE 2022-6/7 and PTP (IEEE1588, SMPTE 2059-2) support; includes IP Status application
- MP-IP-MEAS-UP: Add node locked license for IP Measurement feature sets: IP Graph, IP/PTP Session, and IP PIT Histogram applications (Option MP-IP-STD required)
- MP-IP-CAP-UP: Add node locked license for IP stream capture (Option MP-IP-MEAS required)
- MP-FMT-4K-UP: Enable 12G-SDI, add node locked license for 4K formats
- MP-PROD-UP: Add node locked license for Production Tools (Stop display, 3D LUT function)

Warranty

Standard product warranty: 1 year; Long-term product support: 5 years
Recommended accessories

<table>
<thead>
<tr>
<th>MPI-PTBL</th>
<th>Portable cabinet for MPI unit includes handle, feet, tilt bail, and protective front cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI-RACK-MM</td>
<td>19 inch, 3RU dual rack cabinet for one MPI unit or two MPI units in a side-by-side installation, includes front panel USB/headphone connectors for each MPI unit</td>
</tr>
<tr>
<td>MPI-RACK-MW</td>
<td>19 inch, 3RU dual rack cabinet for one MPI unit or one MPI unit in a side-by-side installation with a WFM52x0, WFM7200, WFM8x00 instrument, includes front panel USB/headphone connectors for one MPI unit</td>
</tr>
<tr>
<td>MP-SFP</td>
<td></td>
</tr>
<tr>
<td>Opt. 3GTO</td>
<td>SD/HD/3G Optical (1310 nm) SDI SFP transmitter module (to be installed into SDI SFP+ cage for optical SDI loop through output)</td>
</tr>
<tr>
<td>Opt. 3GTD</td>
<td>SD/HD/3G DIN SDI SFP transmitter module (to be installed into SDI SFP+ cage for SDI loop through output with DIN coaxial connector)</td>
</tr>
<tr>
<td>Opt. 3GTH</td>
<td>SD/HD/3G HDBNC SDI SFP transmitter module (to be installed into SDI SFP+ cage for SDI loop through output with HDBNC coaxial connector)</td>
</tr>
<tr>
<td>Opt. 12GTO</td>
<td>SD/HD/3G/12G Optical (1310 nm) SDI SFP transmitter module (to be installed into SDI SFP+ cage for optical SDI loop through output)</td>
</tr>
<tr>
<td>Opt. 12GTH</td>
<td>SD/HD/3G/12G HDBNC SDI SFP transmitter module (to be installed into SDI SFP+ cage for SDI loop through output with HDBNC coaxial connector)</td>
</tr>
<tr>
<td>Opt. 10GESR</td>
<td>10G Ethernet short range (850 nm) transceiver module (to be installed into 10GbE SFP+ cage); requires Option MPI-IP-STD</td>
</tr>
<tr>
<td>Opt. 10GELR</td>
<td>10G Ethernet long range (1310 nm) transceiver module (to be installed into 10GbE SFP+ cage); requires Option MPI-IP-STD</td>
</tr>
</tbody>
</table>
MPI front and rear panels

MPX front and rear panels

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.