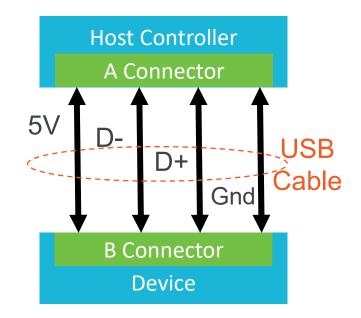

Agenda

▶ USB的应用场景和行业前瞻

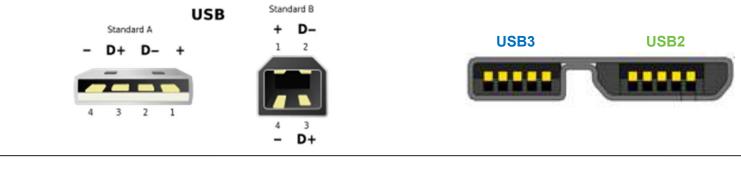
- 市场概况和标准发展现状
- TypeC 接口介绍

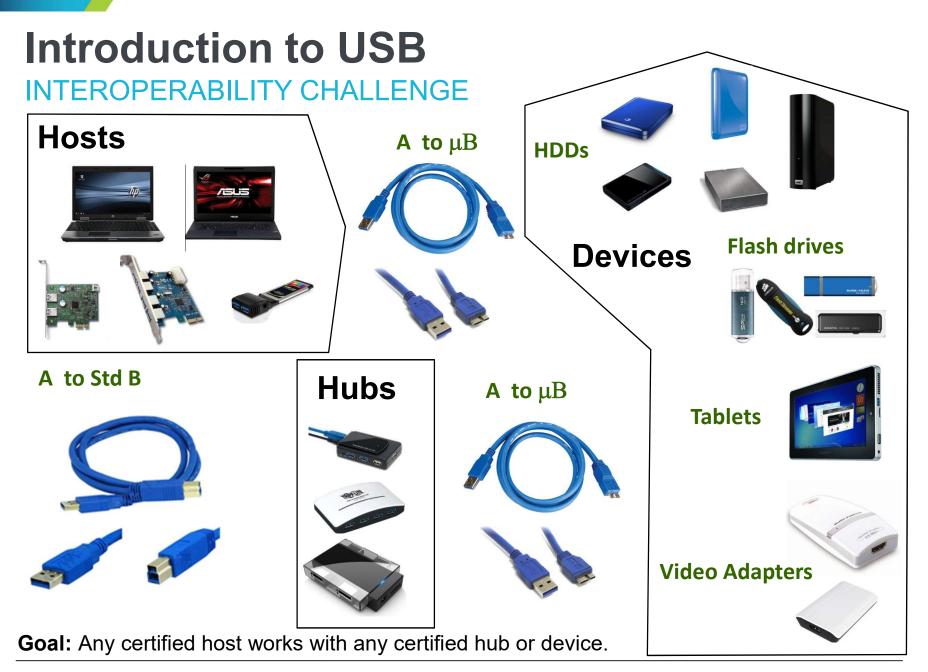

> USB2.0 → 致性测试解决方案
 > USB3/USB4现状及测试概况
 > USB2.0测试演示

TIMELINE OF USB

FUNDAMENTALS OF USB1.X/2.0

- What is USB?
 - Universal Serial Bus (USB) is a serial bus developed in 2000 with a focus of shifting from slower, wide, parallel buses to a single new high speed serial bus.
 - USB is the most successful interface in the history of the PC
 - Is made up of 4 wires (5V, Data+, Data-, Ground)
- How many variations does USB it come in?
 - USB 2.0 provides 3 speed selections, Low, Full, and High Speed. In addition are USB 3.1 Gen1/Gen2 (aka. SuperSpeed, SuperSpeed+)



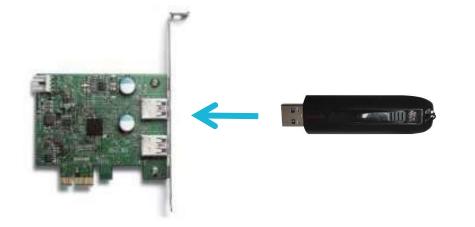

Speed	Data Rate
Low Speed	1.5 Mb/s
Full Speed	12 Mb/s
High Speed	480 Mb/s
Super Speed	5 Gb/s
Super Speed+	10 Gb/s

FUNDAMENTALS OF USB1.X/2.0

- USB 2.0 supports backwards compatibility (High Speed must work with Full & Low Speed)
- Is easy to use, commonly called "hot-pluggable"
- The host uses an upstream "A" connector and devices use a downstream "B" connector.
- VBUS supplies power to devices from the host or hub. For additional power devices can have an external power supply (must be used for compliance testing)

Introduction to USB USB CERTIFICATION

Product certification and logo marking is managed by USB Implementers Forum (USB-IF) <u>www.usb.org</u>

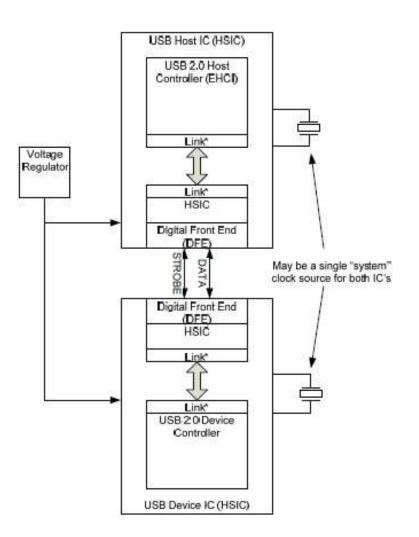

- USB trademark logo indicates a device is certified and a logo license agreement has been signed. This means the device conforms to all applicable USB specifications.
- Cables / Connectors / Ports / Packaging can now be labeled with the USB logo.
- Certifies any host works with any certified hub or device.

INTEROPERABILITY CHALLENGE

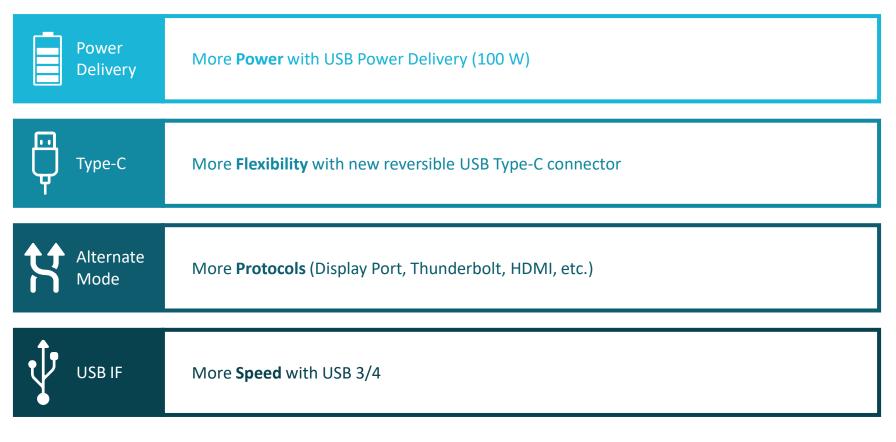
Goal: Any certified host works with any certified hub or device.

- Short Channel
 - 1" host PCB route
 - 1/4" device PCB route
 - Direct plug

- Long Channel
 - 4" host PCB route
 - 4" device PCB route
 - 1m cable



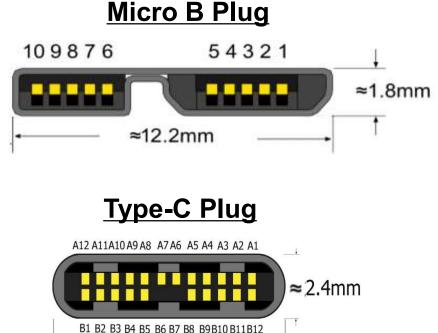
Introduction to HSIC


HIGH SPEED INTER CONNECT (HSIC)

- What is HSIC?
 - USB 2.0 High Speed Inter Connect is a chip to chip on board serial connection.
- Why use HSIC?
 - Can replace I²C, it's faster with no special drivers
 - Customers can reuse USB software instead of investing in multiple on board solutions
 - Super Speed Inter Connect (SSIC)
 brings USB 3.0 plus M-PHY together

What Does Type-C Mean to You?

Source: USB-IF

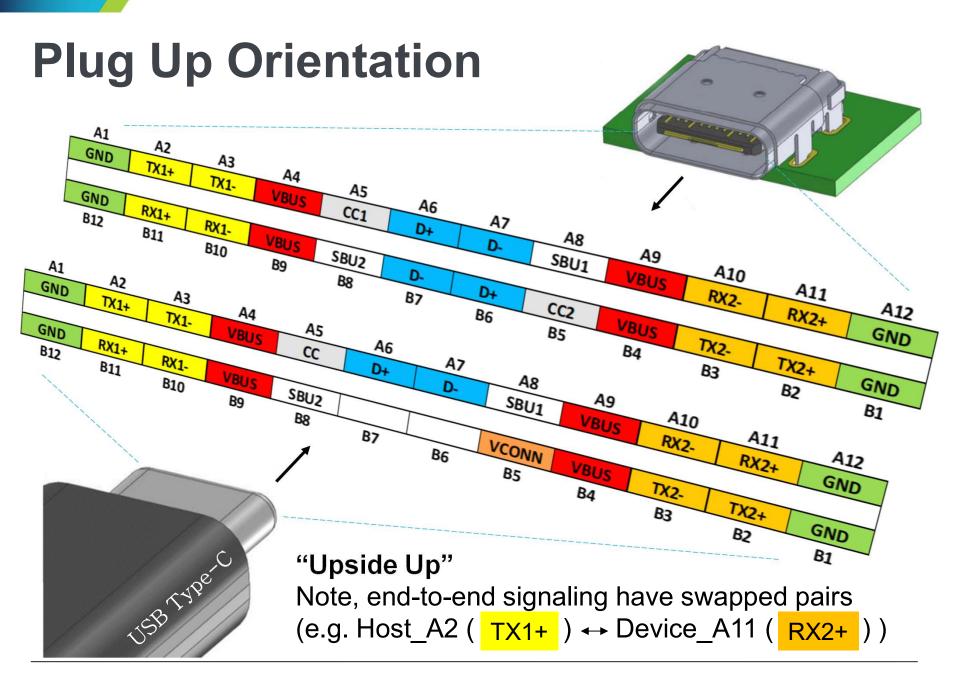

Type-C Comparison (USB-C)

- Rounded, reversible, flipable
- ~25% less width vs. μB
- Signaling

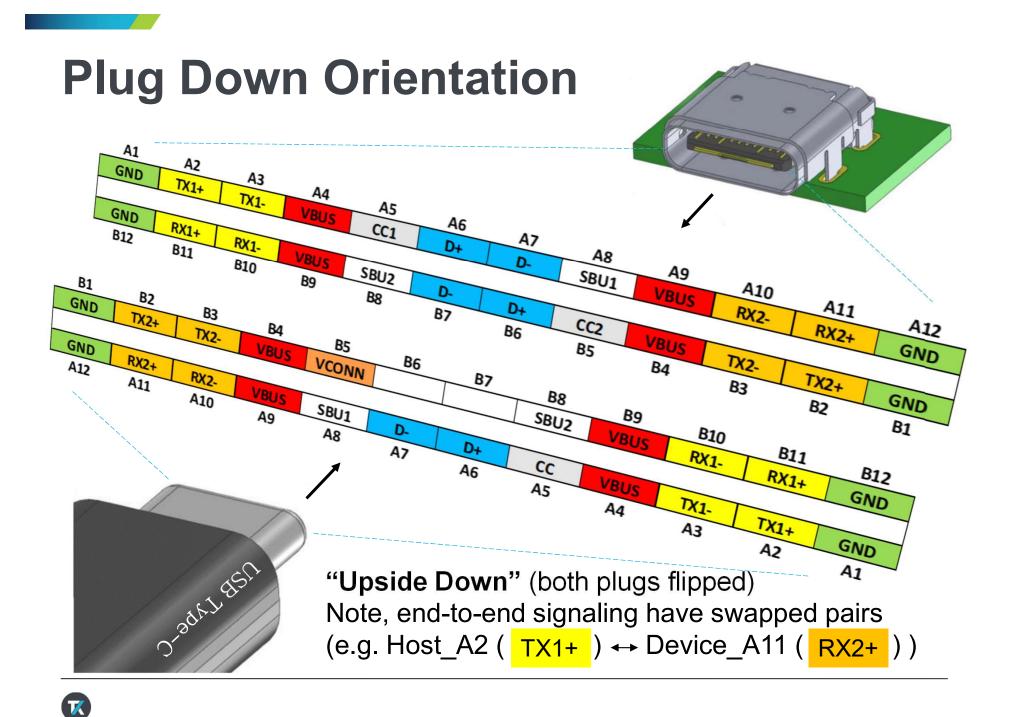
* New signals

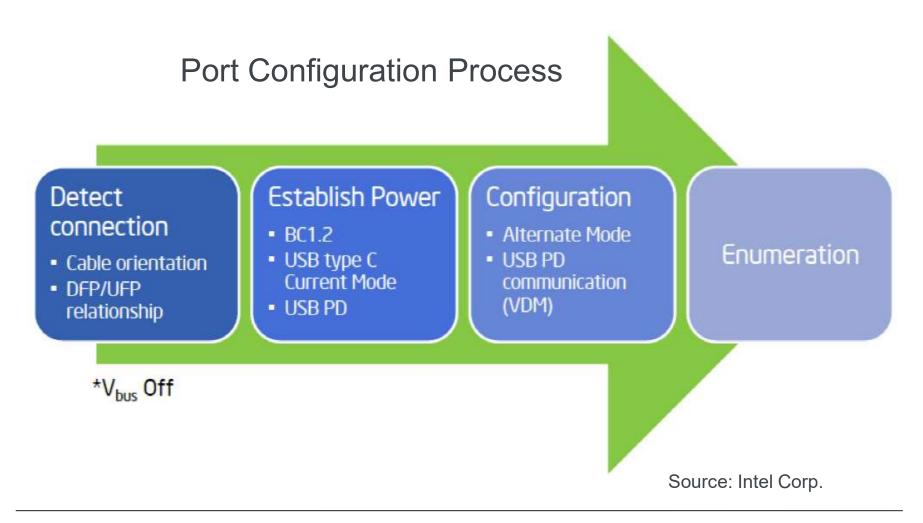
X


- Two SS differential pairs
- Vbus power
- Configuration Channel (CC)
- USB 2.0 differential pair
- Sideband Use (SBU)
- Plug power (Vconn)


≈8.25mm

		griaio										
	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
	GND	TX1+	TX1-	VBUS	CC	D+	D-	SBU1	VBUS	RX2-	RX2+	GND
	GND	RX1+	RX1-	VBUS	SBU2			VCONN	VBUS	TX2-	TX2+	GND
_	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1


Type-C Pin Definitions


X

K

USB = Data + Video + Power

K

Connector Transition

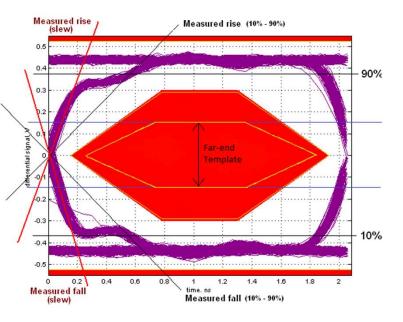
Legacy Cables

Plug 1	Plug 2	Version	Length
А	С	USB 2.0	≤ 4m
А	С	USB 3.1 Gen2	≤ 1m
С	В	USB 2.0	≤ 4m
С	В	USB 3.1 Gen2	≤ 1m
С	Micro-B	USB 2.0	≤ 2m
С	Micro-B	USB 3.1 Gen2	≤ 1m

Defined Adapters

Plug 1	Plug 2	Version	Length
С	Micro-B	USB 2.0	≤ 0.15 m
С	А	USB 3.1 Gen1	≤ 0.15 m

Host (Type-C) Cable (C to Micro-B) Device (Micro-B)



USB 2.0 Compliance Testing

- What is compliance testing?
 - A set of rules that define how thousands of USB hosts / hubs / device all communicate and play together nicely.
- Testing for Legacy devices (FS, LS)
 Signal Quality, Inrush current, Drop & Droop
- High Speed specific tests
 - Signal Quality / Eye Diagram
 - Packet Parameter
 - Receiver Sensitivity
 - Timing (Suspend, Resume, Reset, Chirp)
 - Monotonicity

USB 2.0 Compliance Testing

≻HOST

- Signal Quality
- Droop
- Chirp
- Suspend/Resume/Reset/Packet Parameter
- > Device
 - Signal Quality
 - Suspend/Resume/Reset/Packet Parameter
 - Inrush Current
 - Chirp
 - Sensitivity
- ≻Hub
 - Up-Stream/Down Stream

High Speed Signal Quality

HIGH SPEED SIGNAL QUALITY TESTING INCLUDES

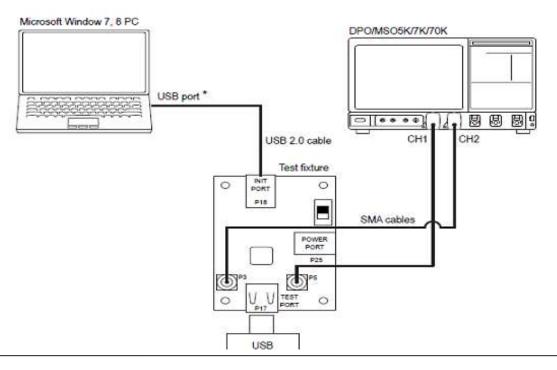
- What is important about Signal Quality (SQ) Testing?
 - Signal Quality Testing provides a wide assortment of base level electrical functionality testing. Allowing the user to quickly know
- What are the SQ tests?
 - Eye-Diagram testing
 - Signal Rate
 - End of Packet Width
 - Monotonicity test
 - Rise and Fall times

USB 2.0 Compliance Testing

COMPLIANCE TESTING – EQUIPMENT

- An Oscilloscope
 - MSO/DPO5000, DPO7000 or MSO/DPO70000 Series
 - 2 GHz or higher for USB 2.0 High-Speed testing
- Probes / Cables
 - 1x TDP1500, or TDP3500 differential probes
 - 3x TAP1500 single-ended probes
 - 1x TCP0030A current probe
 - 1x Matched Pair of SMA cables
- TekExpress USB2 (Option USB2) automated test software
- TDSUSBF fixture set and required USB-IF fixtures
- AWG5000C or AWG7000C signal generator for Receiver Sensitivity testing. (Receiver Sensitivity measurement is not available on the MSO/DPO5000B scopes)

More USB test equipment details at: www.tektronix.com/USB



17 APRIL 2020

55W-60784-0

High Speed Signal Quality TESTING SETUP

- HS Electrical Test Tool SETUP (Test_Packet)
 - A port must repetitively transmit the test packet until the exit action is taken.
 - This enables the testing of rise and fall times, eye patterns, jitter, and any other dynamic waveform specifications.

TekExpress USB2 (Opt. USB2)

HIGH SPEED ELECTRICAL TEST TOOL (HSETT)

- A USB-IF utility that enables specific test modes for official compliance testing
- Requires Win7/8/10 OS and xHCI (3.0 Host controller) or EHCI (2.0 Host controller)

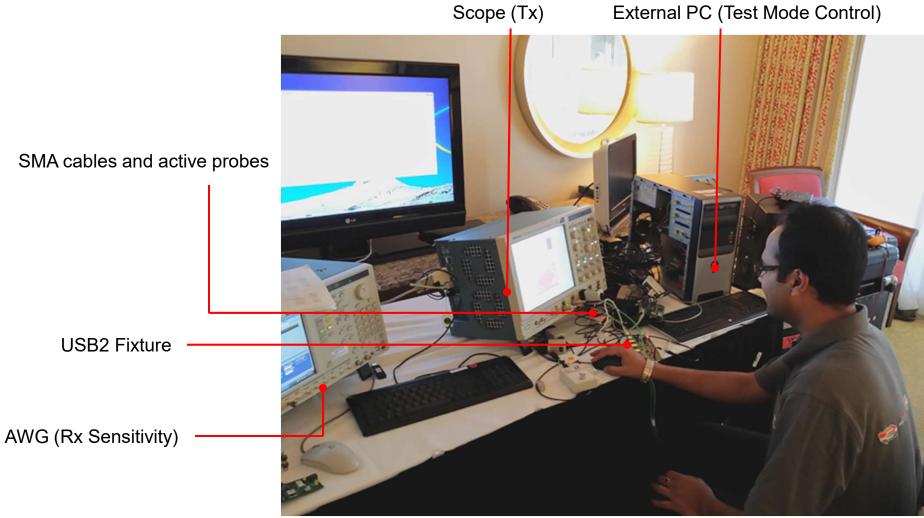
EHCI HS Electrical Test Tool	
Select Type Of Test	Select Host Controller For Use In Testing
Device	PCI bus 0, device 29, function 0 2 Ports
C Hub	
C Host Controller/System	
TEST	Exit

Select Device NONE VID 0x8087, PID 0x24, Address 1, Port 1 VID 0x781, PID 0x5576, Address 2, Port 1 VID 0xa5c, PID 0x5800, Address 3, Port 1	Device Control Device Command TEST_PACKET NONE TEST_J TEST_K TEST_K TEST_SE0_NAK TEST_PACKET SUSPEND	Device Address
Enumerate Bus	RESUME RESET DEVICE DESCRIPTOR LOOP DEVICE DESCRIPTOR SET ADDRESS	Return To Main

EHCI HS Electrical Test Tool - Device Test

High Speed Signal Quality

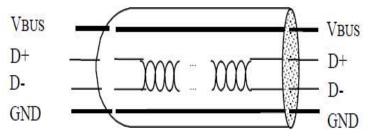
TEST PACKET FORMAT

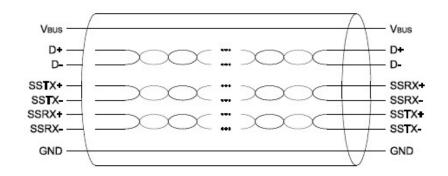

• A port in Test_Packet mode must send this packet repetitively.

NRZI Symbols (Fields)	NRZ Bit Strings	Number of NRZ Bits
{KJ * 15}, KK	{00000000 * 3}, 00000001	32
(SYNC)		
KKJKJKKK	11000011	8
(DATA0 PID)		
JKJKJKJK * 9	00000000 * 9	72
JJKKJJKK * 8	01010101 * 8	64
JJJJKKKK * 8	01110111 * 8	64
JJJJJJJKKKKKKK * 8	0, {111111S *15}, 111111	97
JJJJJJJK * 8	S, 111111S, {0111111S * 7}	55
{JKKKKKKK * 10}, JK	00111111, {S0111111 * 9}, S0	72
JJJKKKJJKKKKJKKK	0110110101110011	16
(CRC16)		
]]]]]]]]	01111111	8
(EOP)		

Compliance Testing

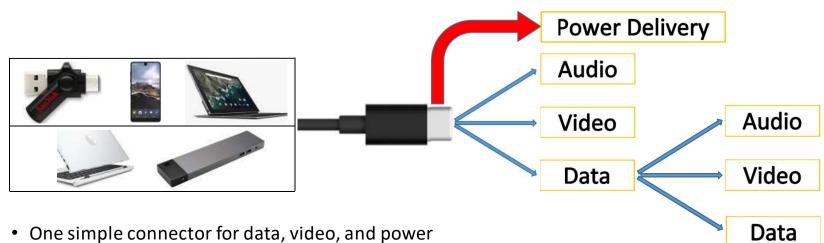
USB-IF 2.0 WORKSHOP



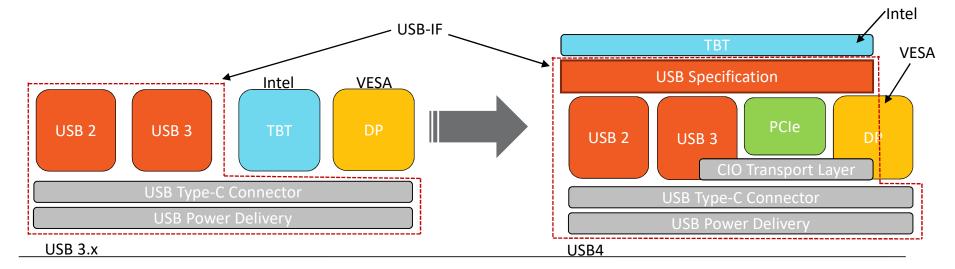

Agenda

- USB的应用场景和行业前瞻
 - 市场概况和标准发展现状
 - TypeC 接口介绍
- 。 USB2.0一致性测试解决方案
- 。USB3/USB4现状及测试概况
- 。 USB2.0测试演示

Increasing Serial Data Bandwidth


- USB 2.0, 480 Mb/s (2000)
 - Shift from slower, wide, parallel buses to narrow, high speed serial bus
 - 40x faster data rate, support for new connectors & charging
- USB 3.0, 5 Gb/s (2008)
 - ~10x faster data rate over 3 meter cable
 - Faster edges, 'closed eye' architecture
- USB 3.1, 5/10 Gb/s (2013)
 - 2x faster data rate over 1 meter cable
 - 'Scaled' SuperSpeed implementation

- One simple connector for data, video, and power
 - Small, flippable connector with symmetrical cables
 - Compatible systems, cables, and devices at various performance levels
- Scalable

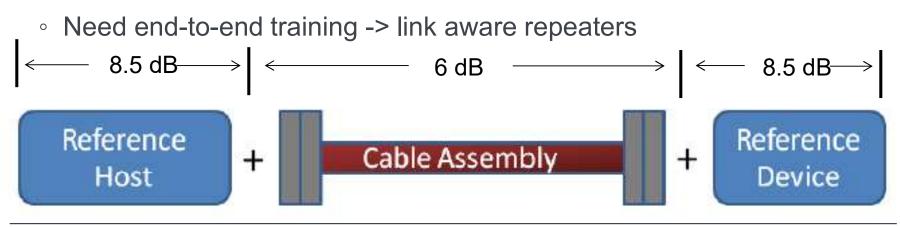

3 1

- Across form factors (phone to workstation), and peripherals (displays, docks, storage)
- Across usages (low power / performance, to 8k uncompressed video)
- USB and Thunderbolt[™] architecture as the foundation

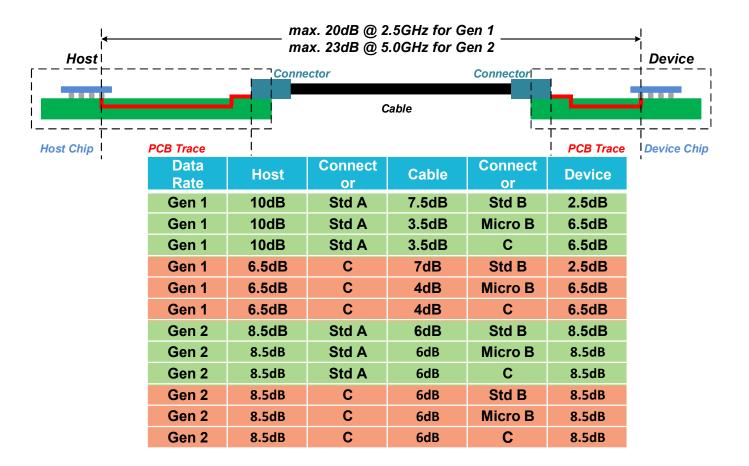
USB4 Overview

MULTIPLE PROTOCOL ONTO A SINGLE PHY

- USB4 enables the next generation of USB performance over existing USB Type-C cable
 - Allows USB, DisplayPort and PCIe Tunneling (multiple protocol onto a single physical interface)
 - New signaling rates and encoding scheme
 - 10 Gbps (USB4 Gen2) works over all existing full-featured Type-C cables
 - 20 Gbps (USB4 Gen3) requires higher performance Gen3 Type-C cables
- Standards-based ownership for specification and certification
- USB4 specification is based on Thunderbolt3 specification
 - Third party vendor can build Thunderbolt3 compatible SOC or peripheral silicon


USB 3.1 Comparison

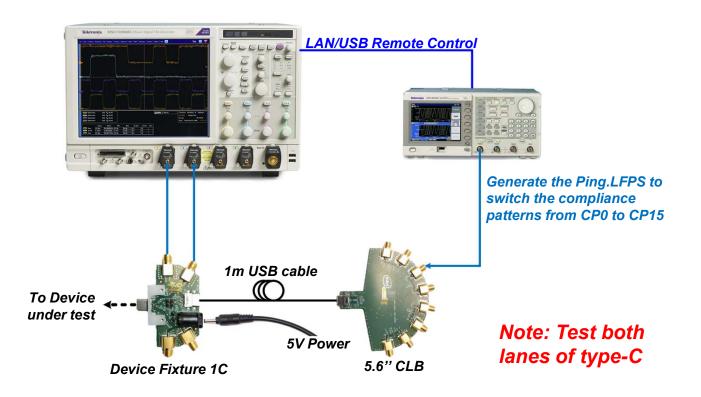
USB 3.1	Gen1	Gen2	
Data Rate	5 Gb/s	10 Gb/s	
Encoding	8b/10b	128b/132b	
Target Channel	3m + Host/Device channels (-17dB, 2.5 GHz)	1m + board ref channels (-23dB, 5 GHz)	
LTSSM	LFPS, TSEQ, TS1, TS2	LFPSPlus, SCD, TSEQ, TS1, TS2,	
Reference Tx EQ	De-emphasis	3-tap (Preshoot/De-emphasis)	
Reference Rx EQ	CTLE	CTLE + 1-tap DFE	
JTF Bandwidth	4.9 MHz	7.5 MHz	
Eye Height (TP1)	100 mV	70 mV	
TJ@BER	132 ps (0.66 UI)	67.1 ps (0.671 UI)	
Backwards Compatibility	Υ	Υ	
Connector	Std. A, Micro, Type-C	Std. A, Micro, Type-C	


New Channel Budget – Gen 2

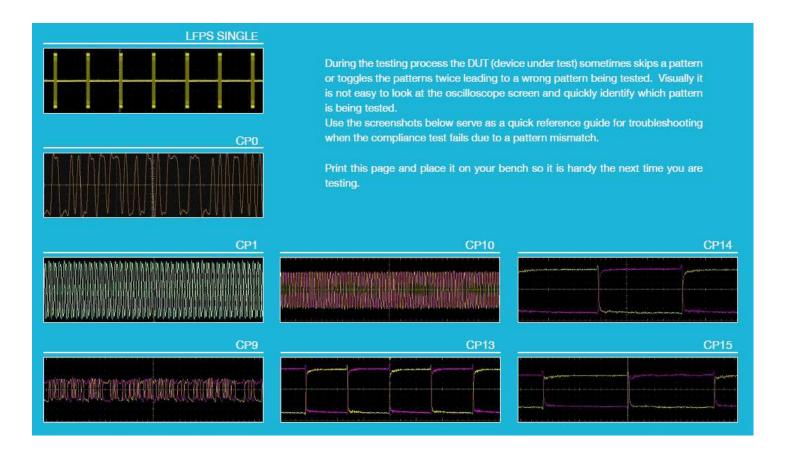
- Target 23 dB @ 5 GHz loss budget (die-to-die)
- Equal channel allocation for host/device
- Tx EQ settings (normative)
 - 2.2 dB Preshoot and -3.1 dB De-emphasis
 - Requires additional compliance patterns (CP13, 14 &15) for Tx testing
- Host or device loss that exceeds 8.5 dB may required repeater

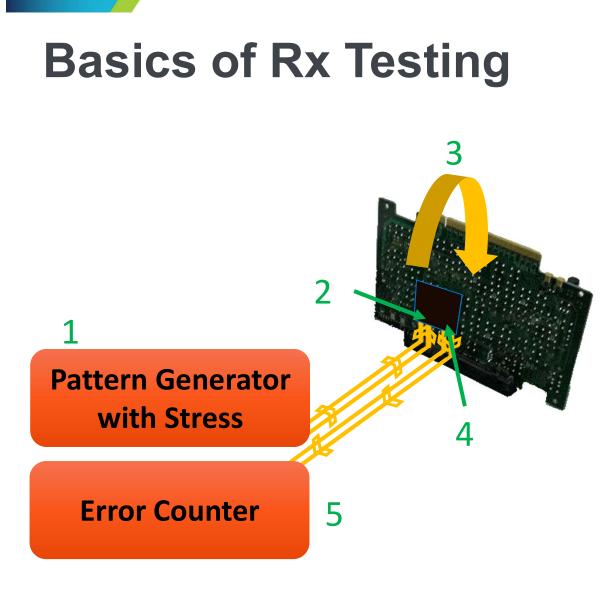
Target channel for eSS operation

K



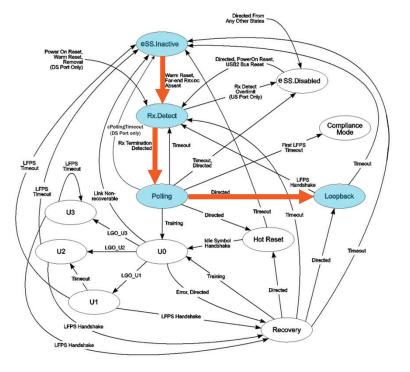
Compliance Test Item


Test ID	Test Description		
TD.1.1	Low Frequency Periodic Signaling TX Test.		
TD.1.2	Low Frequency Periodic Signaling RX Test.	riodic Signaling RX Test.	
TD.1.3	Transmitted Eye Test at 5 GT/s		
TD.1.4	Transmitted Eye Test at 10 GT/s	Eye Test	
TD.1.5	Transmit Equalization Test at 10 GT/s	-TX EQ Test	
TD.1.6	Transmitted SSC Profile Test at 5 GT/s	SSC Test	
TD.1.7	Transmitted SSC Profile Test at 10 GT/s		
TD.1.8	Receiver Jitter Tolerance Test at 5 GT/s]	
TD.1.9	Receiver Jitter Tolerance Test at 5 GT/s (Type-C)	-RX JT Test	
TD.1.1 0	Receiver Jitter Tolerance Test at 10 GT/s	J	

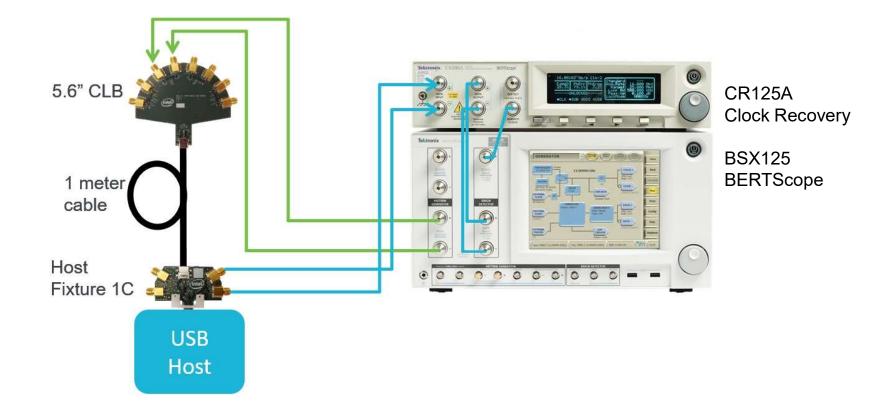

Tx Compliance Test

Example of Test Setup: Type-C Device

Compliance Test Pattern

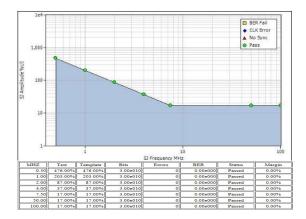


At the simplest level, receiver testing is composed of:


- 1. Send impaired signal to the receiver under test
- 2. The receiver decides whether the incoming bits are a one or a zero
- 3. The chip loops back the bit stream to the transmitter
- 4. The transmitter sends out exactly the bits it received
- 5. An error counter compares the bits to the expected signal and looks for mistakes (errors)

Getting a DUT Into Loopback Mode

- Basic Overview
 - DUT starts in Power-off, or test fixture unplugged
 - At device power-on or hot plug, BERT sends LFPS signaling
 - Device responds by going from LFPS.Polling to training sequence
 - Handshaking sequence between DUT and BERT: TSEQ
 > TS1 > TS2
 - TS2 sequence from BERT sets loopback bit to force DUT into loopback for Rx testing


BERTScope (BSX) USB 3.1 RX Test Configuration

Receiver Tolerance Test Overview

- Nine Test Points (USB3.1 Gen2)
- SSC Clocking is enabled
- Preshoot/De-emphasis enabled
- Stress verified by TJ/Eye Height
- Each SJ term in the table is tested one at a time after the device is in loopback mode

Frequency	SJ	RJ
500kHz	476ps	1.308ps RMS
1MHz	203ps	1.308ps RMS
2MHz	87ps	1.308ps RMS
4MHz	37ps	1.308ps RMS
7.5MHz	17ps	1.308ps RMS
15MHz	17ps	1.308ps RMS
30MHz	17ps	1.308ps RMS
50MHz	17ps	1.308ps RMS
100MHz	17ps	1.308ps RMS

Agenda

≻USB的应用场景和行业前瞻

- 市场概况和标准发展现状
- TypeC 接口介绍

>USB2.0一致性测试解决方案
 >USB3/USB4现状及测试概况
 >USB2.0测试演示

