
Section 1: Introduction

In terms of signal processing, a filter may be thought
of as a mathematical procedure that modifies the
shape of a waveform. Thus given a waveform of any
shape a filter could be designed that would transform
it into any desired shape within the context of some
basic rules, assumptions, and limitations. In that broad

sense one might say that any system that processes 
a signal could be thought of as a filter. For example, 
an oscilloscope channel operates as a lowpass filter
where its 3 dB down point is referred to as its band-
width. If AC coupling is used then the oscilloscope
operates as a bandpass filter. 
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Before the advent of computers and digital sampling,
engineers dealt primarily with analog filters implemented in
electrical circuits. These filters used resistors, capacitors,
and inductors to perform an “analog computation”
known as a convolution. With the invention of digital
computers and A/D converters the convolution process
can be performed by a series of multiplications and
additions on binary data samples that represent a signal.

Digital filters have some significant advantages over
analog filters. For example, the tolerance values of 
analog filter circuit components are large enough such
that high order filters are difficult or impossible to 
implement. With digital filters such high order filters are
easily realized. In addition, analog component values
can change with age or temperature affecting the
response of the filter. Digital filters do not have that
problem. Another major advantage of digital filters is the
ability to reprogram them by changing the coefficients.
This greatly simplifies the implementation of adaptive filters.

Generally speaking, digital filters fall into two major 
categories, FIR “finite impulse response”, and IIR “infinite
impulse response”. The FIR filter has only zeros and no
poles in its transfer function. Thus it is always stable
and cannot oscillate. Therefore, the impulse response of
an FIR filter has finite length. Also, the FIR filter may be
specified with an exactly linear phase response. An IIR
filter has both zeros and poles in its transfer function
and can be unstable. Its impulse response theoretically
lasts to infinity. In other words, it is implemented with a
feedback loop. An IIR filter cannot obtain a true linear
phase response. However, it can approximate linear
phase over regions of interest. This paper will only deal
with filters of type FIR. For a more in depth description
of digital filter theory, see reference list on page 15.

Section 2: FIR Filter Coefficients

An FIR filter consists of an array of data samples, h(m),
that represent the sampled impulse response of the filter
where m is the index into the array. Refer to Figure 1. It
is well known that an impulse consists of cosine functions
of all frequencies of equal magnitude with phase equal
to zero at the time position of the impulse, i.e. each
cosine wave of a different frequency has a peak at the
position of the impulse. This position is referred to as
the zero phase reference point. Thus, if an impulse is
fed into a filter, its impulse response will fully define 
the characteristics of the filter in the time domain.
Computing an FFT of the filter impulse response will
provide the phase and magnitude response of the filter
in the frequency domain.

An FIR filter is obtained by specifying its coefficients.
The coefficients are samples of the filters’ impulse
response. There are numerous methods by which the
impulse response may be obtained. Generally the filter
characteristics are specified in the frequency domain
and the impulse response is obtained by computing an
IFFT. The impulse response is then sampled to obtain
the filter coefficients at the desired sample rate. 
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Figure 1. Basic Filter Conceptual diagram.
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Remez Exchange Method: Perhaps the most well
known method for FIR filter design uses the Remez
exchange algorithm. This algorithm is described in
“Theory and Application of Digital Signal Processing” 
(see reference list on page 15) where a FORTRAN 
program listing is provided. This program allows the
user to specify one of three types of linear phase FIR 
filters such as 1) Multiband, 2) Hilbert Transform, and 
3) Differentiator. Matlab™ has a filter design package
that uses the Remez algorithm providing a modern
Windows™ user interface.

Analog Prototype: There are also methods for trans-
forming a known analog transfer function into a digital
filter transfer function using a bilinear transform. This is
needed because the representation of the complex jω
axis in the analog s-plane maps onto a unit circle in the
digital z-plane domain. The bilinear transform is used to
pre-warp the filter transfer function when converting it
from the s-plane to the z-plane to obtain an equivalent
digital filter transfer function.

A Direct Frequency Sampling Method Used By the
Author: The Remez algorithm method and analog 
prototype methods described above have significant
limitations in regards to controlling both the phase
response and the magnitude response of the desired 
filter. It can be difficult to obtain a desired response 
with these methods. In Section 8: “Arbitrary Frequency
Sampling Filter Design Method,” a procedure is given to
create a filter with arbitrary magnitude and phase
response as specified by the designer.

Section 3: Convolution

Once the filter has been designed and the filter coeffi-
cients have been obtained the application of the filter 
to the input data is performed by the process of 
convolution. This is described in equations (1), (2), 
and (3) in a form that is easily implemented in 

Mathcad™ or Matlab™.

(1)

(2)

(3)

(4)

(5)

(6)

Where M is the number of filter coefficients and must be
an odd number for the indexing scheme described in
equation (2). Even length filters can also be implemented
but the indexing equation (2) must be modified slightly.
The value of N is the length of the input data array
specified by x. The filter array is h. As can be seen by
equation (1), (2), and (3) the process of convolution
involves reversing the time order of the impulse
response of the filter, h, and multiplying it point by 
point with corresponding samples of x starting at index
position M. The results of each multiply are added
together to obtain one filtered output point into the
array, y. The value of n is then incremented by one and
the multiplication and summation procedure is repeated
to obtain the next filtered data sample in y.

Notice that as specified by equation (3) the first
floor(M/2) points in the y( ) array are not defined. Also,
the last floor(M/2) points at the end of the array are not
defined. However, the remainder of the points in the
array are filtered. With this representation the filter is
fully charged and there is no transient start up distortion
from the filter in the output data array. All points of the
final array, y(n), described by equation (6) are valid.

The oscilloscope filtered math waveform does not have
extra points before or after the ends of the waveform
record. Therefore, to avoid filter startup transient distortion,
the undefined points from equation (3) are replaced with
ETnull, “not a number”. These display as blank on screen.
In an exported ASCII file these points appear as spaces. 
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Section 4: Filter Coefficients and Frequency
Response With Respect to Sample Rate

The frequency response of any digital filter is 
normalized with respect to the sample rate, fs.
The filter will have its magnitude and phase response
defined within the frequency range of 0 to 0.5 fs where
the value of 0.5 fs is called the Nyquist point. The key 
filter parameters may be specified using normalized 
values. For example, a lowpass filter could be specified
to have a normalized bandwidth of 0.3. That means that
the cutoff frequency is equal to 0.3 fs. This filter will
have this cutoff frequency no matter what sample rate
value is chosen.

For example, consider a lowpass filter that has a pass-
band from 0 to 0.25 fs. Now assume that the filter coef-
ficients have been determined and that they are applied
to data that has some specified sample rate. Regardless
of what the sample rate of the data is, the filter will
exhibit the same magnitude and phase characteristics
scaled to within a range of 0 to Nyquist. Thus if this 
filter is applied at a sample rate of 1 Hz, the bandwidth
would be 0.25 Hz. If the same filter coefficients are
applied to data that has a sample rate of 1 GHz, then
the filter will have a bandwidth of 250 MHz. A graphic
representation of this affect is shown in Figure 2.

Having a set of normalized filters for general use 
is valuable. For example, new Tektronix oscilloscopes
have such a library of filters stored in disk files. There
are highpass, lowpass, bandpass, bandreject, and other
types of filters in this library. Refer to Section 10: “The
Math Arbitrary Filter Library”.

Having a fixed set of filter coefficients results in
the time duration of the impulse response to vary
with different sample rates. Thus the frequency
domain characteristics such as bandwidth, will vary
accordingly. The number of filter coefficients stays 
constant for this case.

If the user requires a fixed frequency response
from the filter regardless of what the sample rate
is then a different set of filter coefficients is required for
each sample rate. This means that the time interval cov-
ered by the impulse response will be constant. This
results in fewer filter coefficients for lower sample rates
and more coefficients for higher sample rates. Thus the
number of filter coefficients will vary with sample rate for
this case. Obviously the sample rate must be high
enough such that the desired frequency response fits
within the range of Nyquist. For this case the user
should design the filter for the highest sample rate since
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Figure 2. Example of normalized frequency response scaling with
same filter coefficients but different sample rates.
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this will require the most coefficients. Then use interpo-
lation and decimation techniques to resample the filter
coefficients for each sample rate the filter shall operate
at. The various sets of coefficients may then be incorpo-
rated into a single disk file as described in Section 11:
“FIR Filter File Format”. When operating at different 
sample rates in the oscilloscope, the possibility of 
signal and noise aliasing must be taken into consideration.
In addition, the filter will turn off if a sample rate is set in
the scope for which no filter coefficients have been
defined for the ArbFilt( ) math function. For normalized
filter files as described in Section 11, the filter would
always be on regardless of what sample rate is chosen.

Section 5: Aliasing and the Filter Response

The issue of aliasing must be considered when using
FIR filters in general. This is especially true within the
math package of an oscilloscope. Any signals that have
frequency greater than Nyquist that fall within the analog
bandwidth of the oscilloscope will alias within the pass-
band(s) and appear to have a lower frequency than the
actual frequency. 

The best way to avoid aliasing in an oscilloscope is to
operate at the base sample rate where the analog 
bandwidth is less than Nyquist. For this case the analog

channel of the oscilloscope operates as an anti-alias 
filter. For example, a DPO7254 has a base sample rate
of 10 GS/s and a channel bandwidth of 2 GHz which is
less than Nyquist at 5 GHz. This works well as long as
the filter bandwidth is not too small compared to the
scope bandwidth where the filter would be highly over
sampled. The filters are computed with floating point
coefficients so they are more tolerant to over-sampling
than would be the case for fixed point filters. For this
condition the number of coefficients becomes much
larger and so does the compute time for the filter 
convolution.

The graph in Figure 3 shows an example of a low pass
filter operating at the base sample rate of the oscilloscope.
No aliasing occurs for this example.

An example is shown in Figure 4 where the sample rate,
fs, is lower than the base rate of the oscilloscope and
the filter response is aliased. Notice that aliasing of the
digital filter results in images that repeat multiple times
at integer multiples of the sample rate. In this case the
user intended to have a lowpass filter to remove out of
band noise; but what they actually get is a lowpass 
filter with multiple bands of high frequency noise and/or
signal aliased into the passband.
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Figure 3. An example of the desired response from a band limit 
filter in an oscilloscope operating at base sample rate. Filter
response is shown in black and scope channel response is 
shown in red. No aliasing occurs in this example.
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Figure 4. Example of an aliased Filter Response when the band-
width limit filter sample rate is too low. Black is digital filter response
and red is the analog oscilloscope channel response. The resulting
filter does not provide the desired bandwidth limit function.
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Section 6: Linear Phase

A system that has linear phase as a function of frequency
will pass all frequencies with the same time delay. A
non-linear phase system will change the phase of different
components with respect to each other resulting in
waveform distortion. Therefore, it is often desirable to
design filters that have linear phase characteristics.
However, sometimes a filter is needed that will correct
the phase errors in a system so that the filtered result
will have a linear phase response. This type of filter will
have a non-linear phase characteristic which is comple-
mentary to the system phase response to be corrected.
An example of this is the bandwidth enhancement filters
used in the TDS6154C oscilloscopes. These filters are
calibrated during manufacturing and result in a scope
channel response that is much flatter and that has a 
linear phase characteristic.

Section 7: Filter Parameters

The following is a list of parameters and terms normally
used to describe or specify the characteristics of a filter.

Filter Transfer Function Name: User defined FIR, 
Bessel Thompson, Butterworth, Chebychev, Gaussian,
etc. NOTE: The Bessel Thompson class of filters are 

commonly used as the analog bandwidth limit filter in 
oscilloscope channels. It is also used as the filter 
response type for optical reference receiver mask 
testing applications. The reason for its popularity is 
that it is the closest one can get to realizing an ideal 
Gaussian filter response which is not physically 
realizable. This filter type does a reasonably good job 
of approximating linear phase in the passband using a
transfer function with both poles and zeros. NOTE: 
Several of the filter types listed here originated as 
analog filter designs incorporating poles and zeros. 
Therefore to realize them as FIR filters might require
using pre-warping and bilinear transform techniques.

Filter Type: Lowpass, highpass, bandpass, bandstop,
Hilbert transform, differentiator, multiband, etc.

Cutoff Frequency: Used to specify the bandwidth of
highpass, lowpass , bandpass, and band reject filters.
Cutoff frequency is the point at which the magnitude 
has rolled off to –3 dB. Refer to Figures 5, 6, 7, and 8.

Bandwidth: The range of frequencies in the passband
of a filter. Cutoff frequencies defining the band edges 
are at the -3 dB down point on the magnitude 
response curve.
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Figure 5. Lowpass filter parameters.
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Figure 6. Highpass filter parameters.
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Center frequency: Used to specify the center 
frequency of bandpass or band reject filters. Refer to 
Figures 7 and 8.

Q: The Q parameter is the ratio of a filters’ center 
frequency to the bandwidth as shown in equation (8). 

Rolloff rate: The slope of the transition band is 
rolloff rate. It is commonly specified in dB/octave 
or dB/decade.

Figures 5 and 6 illustrate the various filter parameters and
terminology. The filter cutoff frequency is represented by
fc in Figures 5 and 6.

For the case of the bandpass filter shown in Figure 7 fc
is the center frequency of the passband. Also, f1 is 
the lower cutoff frequency and f2 is the upper cutoff 
frequency and bw is the bandwidth as defined by 
equation (7). The Q of the filter is defined by equation (8).

(7)

(8)

Filter Rolloff Rate

The slope of the transition band of a filter is referred to
as its’ rolloff rate. This is commonly specified in dB per
octave or in dB per decade. An octave is an interval
where the frequency is doubled. A decade is an interval
where the frequency is multiplied by 10. The order of a
filter is often associated with the rolloff rate of the filter.
For example, a 1st order filter rolls off at 6 dB per
octave. A 2nd order filter rolls off at 12 dB per octave.
The rolloff rate in dB/octave is equal to the filter order
times six. This is only true for typical filter designs 
where the poles and zeros of the transfer function 
are positioned to give a typical monotonic slope. It is
possible to specify transfer functions for which this rule
does not apply.
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Figure 7. Bandpass filter parameters.
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Figure 8. Bandreject filter parameters.
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Figure 9. Filter rolloff rate in dB / octave.
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Section 8: Arbitrary Frequency Sampling
Filter Design Method

This section describes a design method for arbitrarily
specifying both phase and magnitude response for an
FIR filter in the frequency domain and then computing
the time domain response. Design tools such as
Mathcad™ or Matlab™ are ideal environments for
implementing these procedures. Refer to “Digital Signal
Processing” on the reference list on page 15 for a 
discussion of frequency sampling filter design method.
The general steps are as follows:

1. Define the Magnitude response: Derive a function 
or other means for specifying the magnitude 
response of the filter in the range of 0 Hz to the 
Nyquist point and store in the array, X (See Figure 10).

2. Replicate this magnitude data, X, in reverse order
appended to the end of the array, X. See Figure 11. 
Extreme care must be taken as to the position of 

these samples and which index to start on for the 
beginning and end of the copied data. The total 
number of points in X will be the length of the IFFT. 
If the IFFT has an even number of points then the 
Nyquist point is on one of the samples in the spectrum.
If the IFFT has an odd number of points then Nyquist 
does not occur on a sample but rather between two 
samples. Failure to take this detail into account will 
result in errors in the final filter result with the complex
part of the IFFT not being equal to zero as it should 
be. Note: The IFFT of X will be zero if X has a 
magnitude response symetrical about Nyquist as 
shown in Figure 11 and phase response anti-symetrical
about Nyquist as shown in Figure 12. That means the
data to the right of Nyquist is the complex conjugate 
in reverse order of the data to the left of Nyquist 
where the conjugate of a + jb is equal to a – jb.
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Figure 11. Create the Magnitude portion of the complex conjugate
of the data obtained in step 1.
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Figure 10. Define the frequency domain magnitude response.
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3. Assign Linear Phase: Use rotation of coordinate 
equation (9) to rotate all of the data points in X. This 
converts X into an array of complex numbers of the 
form a + jb where a is the real part and b is the 
imaginary part and j is the square root of -1. The 
equations are as follows:

(9)

Where N is the length of the X array and n is an index
variable over the range of the array. The resulting 
linear phase plot would appear similar to that shown 
in Figure 12. The group delay is equal to the negative
of the slope of the phase response. The steeper the 
slope of the linear phase response more delay there 
is through the filter. One may assign no delay to the 
filter and leave the phase response at zero for all 
frequency values. For this case equation (9) would 
not be used.

4. Obtain the time domain impulse response of 
the filter: Compute the IFFT of X as shown in 
Figure 13. If the data indexes were all correct on the 
above steps to create the frequency domain 
response and its complex conjugate, then the 
imaginary part of x will be zero and the real part will 
be the desired impulse response of the filter.

5. Sample the impulse response to obtain the FIR 
filter coefficients.

fs/2 fsPh
as

e

Figure 12. Assign a linear phase function to the data in X. Vertical
axis is phase of X( f ) where f is frequency.
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Figure 13. Use IFFT to obtain the filter impulse response.

Figure 14. Obtain the final filter coefficients.
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Section 9: The DPO Filter Menu

Shown in Figure 15 is a screen shot of the menu used
to setup the ArbFilt1( ) math function. This demonstrates
how the filter functions may be used in a math expression
defined as math1.

Figure 15. Screen shot showing ArbFilt( ) function and menu to specify file name for the filter.
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Section 10: The Math Arbitrary Filter Library

This section describes the library of FIR filters that are
available for use under the arbFilt<x>( <fsource wave-
form> ) function in the Tektronix oscilloscope waveform
math section. The user may find this under the path:
c:\TekScope\Math Arbitrary Filters\<filename> The 
filename of each filter identifies its’ type as lowpass,
highpass, etc and also identifies its’ normalized cutoff
frequency or other identifying factors. The precise 
magnitude characteristics of these filters are shown in
the following graphs. These are all linear phase filters.

Lowpass Filters:

Figures 16 and 17 show the available set of lowpass 
filters. Their normalized frequency response is shown
from 0 to 1/2 the sample rate. These filters will operate
at any sample rate with cutoff frequency scaled as shown
Figure 16. The filters have normalized cutoff frequencies
of 0.05, 0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.40, and
0.45. Stop band rejection is typically between –50 and
–60 dB.
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Figure 16. Frequency response of the available lowpass filters.

File Name Normalized Cutoff Frequency

lowpass_0.05bw.flt 0.05

lowpass_0.10bw.flt 0.10

lowpass_0.15bw.flt 0.15

lowpass_0.20bw.flt 0.20

lowpass_0.25bw.flt 0.25

lowpass_0.30bw.flt 0.30

lowpass_0.35bw.flt 0.35

lowpass_0.40bw.flt 0.40

lowpass_0.45bw.flt 0.45

Figure 17. List of lowpass filters available in the library.
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Highpass Filters:

Figures 18 and 19 show the available set of highpass 
filters. Their normalized frequency response is shown
from 0 to 1/2 the sample rate. These filters will operate
at any sample rate with cutoff frequency scaled as
shown below on the graphs. The filters have normalized
cutoff frequencies of 0.05, 0.1, 0.15, 0.20, 0.25, 0.3,
0.35, 0.40, and 0.45. Stop band rejection is typically
between –50 and –60 dB.

Bandpass Filters:

Each filter has a bandwidth of 0.05 times the sample
rate. They will operate at any sample rate. The available
center frequencies are 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.45. Stopband attenuation is approxi-
mately -60 dB and passband ripple is around 1 dB. See
Figures 20 and 21.
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Figure 18. Frequency response of the available highpass filters.

File Name Normalized Cutoff Frequency

highpass_0.05bw.flt 0.05

highpass_0.10bw.flt 0.10

highpass_0.15bw.flt 0.15

highpass_0.20bw.flt 0.20

highpass_0.25bw.flt 0.25

highpass_0.30bw.flt 0.30

highpass_0.35bw.flt 0.35

highpass_0.40bw.flt 0.40

highpass_0.45bw.flt 0.45

Figure 19. List of highpass filters available in the library.
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Figure 20. Frequency response of the available bandpass filters.

File Name Normalized Normalized Center 
Bandwidth Frequency

bandpass_0.05bw_0.05center.flt 0.05 0.05

bandpass_0.05bw_0.10center.flt 0.05 0.10

bandpass_0.05bw_0.15center.flt 0.05 0.15

bandpass_0.05bw_0.20center.flt 0.05 0.20

bandpass_0.05bw_0.25center.flt 0.05 0.25

bandpass_0.05bw_0.30center.flt 0.05 0.30

bandpass_0.05bw_0.35center.flt 0.05 0.35

bandpass_0.05bw_0.40center.flt 0.05 0.40

bandpass_0.05bw_0.45center.flt 0.05 0.45

Figure 21. Table of available normalized bandpass filters.
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Bandstop Filters:

Each filter has a bandwidth of 0.1 times the sample
rate. They will operate at any sample rate. The available
center frequencies are 0.10, 0.15, 0.20, 0.25, 0.30,
0.35, and 0.40. Stopband attenuation is approximately
–110 dB, however, the noise floor of the oscilloscope
will not allow for that depth. With an FFT and long

record length and averaging turned on one can push
noise floors into the – 100 dBm range on an 8-bit
scope! However, the scope will have some spurious 
signals above that floor. This is possible because the
FFT is an average calculation internally and the averaging
function increases the vertical bits of resolution. See
Figures 22 and 23.
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Figure 22. Frequency response of the available bandstop filters.

File Name Normalized Normalized Center 
Bandwidth Frequency

bandstop_0.1bw_0.10center.flt 0.1 0.10

bandstop_0.1bw_0.15center.flt 0.1 0.15

bandstop_0.1bw_0.20center.flt 0.1 0.20

bandstop_0.1bw_0.25center.flt 0.1 0.25

bandstop_0.1bw_0.30center.flt 0.1 0.30

bandstop_0.1bw_0.35center.flt 0.1 0.35

bandstop_0.1bw_0.40center.flt 0.1 0.40

Figure 23. Table of available normalized bandstop filters.
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Figure 24. Frequency response of the available smoothing filters.

File Name Length Normalized Stopband 
Bandwidth attenuation dB

smooth3.flt 3 0.1558 -9.4

smooth5.flt 5 0.0903 -12

smooth10.flt 10 0.0446 -12.9

smooth20.flt 20 0.0224 -13.2

smooth50.flt 50 0.00887 -13.2

smooth100.flt 100 0.0045 -13.2

smooth200.flt 200 0.0022 -13.2

Figure 25. Table of available smoothing filters.
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Smoothing Filters:

These are sometimes called box car filters. They simply
average together adjacent samples along the time
record. The filter coefficients for these filters are all equal
to 1/M where M is the length of the filter. 
The name of the filter files indicate what length the
smoothing filter is. Their frequency responses are 
shown in Figure 24. 

Smoothing filters are lowpass filters with a somewhat
less than optimal stop band characteristic. However,
they are commonly used to remove high frequency noise
from a displayed trace. Take care in using to insure that
the passband of the signal you are filtering is well within
the passband of the filter you choose. That will insure
that only noise is removed. Lengths of 3, 5, 10, 20, 50,
100, and 200 are provided in the library.
See Figure 25. Refer to Figure 24. The red trace is for
filter length 3, followed by blue trace at 5, followed by
magenta trace for 10, and so on.  

Hilbert Transform Filter:

The ideal Hilbert transform filter has a gain of one at all
frequencies and shifts the phase of all frequencies by 
90 degrees. This type of filter is one of the types that
may be specified in the Remez Exchange algorithm
described in “Theory and Application of Digital Signal
Processing” referenced on page 15. Notice that this 

filter departs from its desired behavior in the frequency
range of 0 to 0.025 times the sample rate and also in
the range of about 0.475 to 0.5 times the sample rate.
This type of filter can be used to create quadrature 
signals over a wide frequency range. The filename for this
filter is HilbertTransform90PhaseShift.flt. See Figure 26.

Differentiator Filter:

The ideal differentiator is a high pass filter that shifts
phase by 90 degrees. Its’ frequency response would be
linear all the way from DC to 0.5. However, that cannot
easily be realized so the response of the filter provided
in the library makes a good differentiator for the 
frequency range of DC to 0.45. See Figure 27.

Section 11: FIR Filter File Format

This section describes the ASCII file format for storing
filters for use in the Tektronix oscilloscope waveform
math section. A filter menu function allows the user to
specify a disk file name containing the filter. A single file
format allows the user to specify a different set of coeffi-
cients for each sample rate at which the filter is allowed
to operate. If the sample rate is not in the file list then
the filter will not be applied to the data. The file format
also allows the user to specify that the set of filter coef-
ficients is normalized. This allows the same set of filter
coefficients to operate at all sample rates.
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Figure 26. Frequency response of the Hilbert transform filter.
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The ASCII file format is specified as follows:

# Comments preceded by # symbol

< sampleRate > coef1, coef2, …. coefN

< sampleRate > coef1, coef2, …. coefN

| |

| |

< sampleRate > coef1, coef2, …. coefN

Each set of filter coefficients in a file are specified in one row preceded by the sample rate value at which that set 
will operate. If the user specifies the @ symbol for the sample rate then the filter will operate at all sample rates. If the
@ symbol is specified then there should only be one set of filter coefficients in the file. However, the user may have
other rows with sample rates specified and they will be ignored. There will be a separate row for each sample rate
the filter is to operate at. Each row may have a different number of coefficients with a maximum of 1000. The file may
contain up to 20 rows.

An example of file content for a normalized filter is shown as follows. This example is the contents of the 
smooth5.flt file. 

@ 0.2, 0.2, 0.2, 0.2, 0.2

An example of a filter that is setup to operate at a specific sample rate is given as follows. This is the contents of a
file named 200 MHz_mult_sample_rates.flt that is included in the library directory on the oscilloscope.

#This is a 4th order Bessel Thompsen low pass filter.

#200MHz bandwidth, will operate at any of the following sample rates:

# 40 GS/s, 20 GS/s, 10 GS/s, 5 GS/s, 2.5 GS/s, 1 GS/s, 500 MS/s

5e8; 1.968e-007,1.008,-0.00978,0.002267,-0.0002208,1.643e-005,-1.397e-006,1.434e-007

1e9; 9.524e-008,0.3899,0.4877,0.1304,-0.004733,-0.004566,…………………………. 

2.5e9; 3.868e-008,0.01885,0.1081,0.1982,0.2284,0.1981,……………………… 

5e9; 1.935e008,0.0007332, 0.009428, 0.02874, 0.05408, 0.07921, ……………………….. 

1e10; 9.673e-009,3.445e-006,0.0003666,0.001831,0.004714,0.008978,0.01437,0……………….

2e10; 4.837e-009, 1.657e-008, 1.723e-006, 4.274e-005, 0.00018334-009, ………………..

4e10;2.418e-009, -3.524e-009, 8.284e-009, -1.795e-008,8.613e-007, ……………….

Conclusion

This paper has presented information on the design 
and use of FIR digital filters specifically targeted for the Tektronix oscilloscope waveform math sub-section. A fre-
quency sampling filter design method was described to allow the oscilloscope user to create custom filters. In addi-
tion a library of FIR filters that are provided within the oscilloscope was defined. This library provides a wide range of
normalized FIR filters for general purpose use. This paper has provided necessary information needed to enable the
scope user to make effective use of the arbitrary FIR filter function in a DPO oscilloscope platform math package. 
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Glossary

Convolution - A process using multiplies and additions
to implement a filter operation.

DSP – Digital Signal Processing

DUT – Device Under Test

FIR - Finite Impulse Response

FFT – Fast Fourier Transform

IFFT – Inverse Fast Fourier Transform

IIR - Infinite Impulse Response

Magnitude Response - The magnitude as a function 
of frequency at the output of a DUT as a function of 
constant amplitude input as a function of frequency. 

Phase Response – the phase as a function of frequency
at the output of a DUT given a cosine input signal as a
function of frequency with zero phase.

References

1. Alan V. Oppenheim/Rona. W. Schafer, Digital Signal 
Processing, Prentice-Hall Inc., Copyright 1975, 
page 155, ISBN 0-13-214635-5 

2. Lawrence R. Rabiner-Bernard Gold, Theory and 
Application of Digital Signal Processing, Prentice-Hall, Inc.,
Copyright 1975 page 75-183

3. Lawrence R. Rabiner-Bernard Gold, Theory and 
Application of Digital Signal Processing, Prentice-Hall, Inc.,
Copyright 1975 page 187-204

Author: John J Pickerd


