Features & Benefits
- Trigger
- Integrated RF signal analysis package lets you take full advantage of oscilloscope settings
- Pinpoint™ triggering offers over 1400 combinations to address virtually any triggering situation
- Capture
- Direct observation of microwave signals without need of an external down converter
- All signals up to the analog bandwidth of oscilloscope are captured into memory
- Customize oscilloscope acquisition parameters for effective use of capture memory
- FastFrame segmented memory captures signal bursts without storing the signal's off time
- Supports RF, I and Q, and differential I and Q signals using the oscilloscope's 4 analog inputs
- Analyze
- Extensive time-correlated, multidomain displays connect problems in time, frequency, phase, and amplitude for quicker understanding of cause and effect when troubleshooting
- Power measurements and signal statistics help you characterize components and systems: ACLR, Multicarrier ACLR, Power vs. Time, CCDF, OBW/EBW, and Spur Search
- AM/FM/PM Modulation and Audio Measurements (Opt. SVA) for characterization of analog transmitters and audio signals
- Settling Time Measurements, Frequency, and Phase (Opt. SVT) for characterization of wideband frequency-agile oscillators
- Advanced Signal Analysis Suite (Opt. SVP) – Automated pulse measurements including rise time, pulse width, and pulse-to-pulse phase provide deep insight into pulse train behavior
- General Purpose Digital Modulation Analysis (Opt. SVM) provides vector signal analyzer functionality
- Flexible OFDM analysis (Opt. SVO) of 802.11a/g/j and WiMAX 802.16-2004 signals
- Frequency offset control for analyzing baseband signals with near-zero intermediate frequencies (IF)
- Tektronix OpenChoice® makes for easy transfer to a variety of analysis programs such as Excel and Matlab
Applications
- Wideband Radar and Pulsed RF Signals
- Frequency Agile Communications
- Broadband Satellite and Microwave Backhaul Links
SignalVu™ Vector Signal Analysis Software for MSO/DPO5000, DPO7000, and DPO/DSA/MSO70000 Series Oscilloscopes
Wideband Signal Characterization
SignalVu vector signal analysis software helps you easily validate wideband designs and characterize wideband spectral events. By combining the signal analysis engine of the RSA5000 and RSA6000 Series real-time spectrum analyzer with that of the industry’s widest bandwidth digital oscilloscopes, designers can now evaluate complex signals without the need of an external down converter. You get the functionality of a vector signal analyzer, a spectrum analyzer, and the powerful trigger capabilities of a digital oscilloscope – all in a single package. Whether your design validation needs include wideband radar, high data rate satellite links, or frequency-hopping communications, SignalVu vector signal analysis software can speed your time-to-insight by showing you time-variant behavior of these wideband signals.
SignalVu is an integrated software application for MSO/DPO5000, DPO7000, and DPO/DSA/MSO70000 Series digital oscilloscopes. Users can easily switch between the SignalVu application and the oscilloscope’s user interface to optimize the collection of wideband signals.
Trigger

Powerful oscilloscope triggers allow the user to capture only the relevant portion of wideband signals. Pinpoint trigger functions such as combining A and B events with Edge with Holdoff can capture a pulse train during a specific transmitter mode of operation.
SignalVu software works seamlessly with the oscilloscope allowing users to utilize all of its powerful triggering capabilities. The ability to trigger on time- and amplitude-varying events of interest is paramount in wideband system design, debug, and validation. The Tektronix oscilloscopes' trigger systems allow selection of virtually all trigger types on both A and B trigger events whether they be transition, state, time, or logic qualified triggers. Once triggered, SignalVu processes the acquisition for analysis in multiple domains.
Capture

Once captured into memory, SignalVu provides detailed analysis in multiple domains. The spectrogram display (left panel) shows the frequency of an 800 MHz wide LFM pulse changing over time. By selecting the point in time in the spectrogram during the On time of the pulse, the chirp behavior can be seen as it sweeps from low to high (lower right panel).
Capture once – make multiple measurements without recapturing. All signals in an acquisition bandwidth are recorded into the oscilloscope’s deep memory. Up to four channels can be captured simultaneously; each of which can be independently analyzed by SignalVu software. Channels can be RF, I and Q, or differential inputs. Users can also apply math functions to the acquisition prior to analysis by SignalVu. Acquisition lengths vary depending upon the selected capture bandwidth – up to 25 ms can be captured on a single channel with the MSO/DPO5000 Series, up to 12.5 ms can be acquired on a single channel with the DPO7000 Series, and up to 2.5 ms can be captured on a single channel with the DPO/DSA/MSO70000 Series. Significantly longer capture times can be realized with lower oscilloscope sample rates.
Using the FastFrame segmented memory feature in SignalVu enables you to capture events of interest, such as low duty cycle pulsed signals, while conserving acquisition memory. Using multiple trigger events, FastFrame captures and stores short-duration, bursty signals and passes them to SignalVu vector signal analysis functions. Capturing thousands of frames is possible, so long-term trends and changes in the bursty signal can be analyzed.
Analyze
SignalVu vector signal analysis software utilizes the same analysis capabilities found in the RSA5000 and RSA6000 Series real-time spectrum analyzers. SignalVu advances productivity for engineers working on components or in wideband RF system design, integration, and performance verification, or operations engineers working in networks, or spectrum management. In addition to spectrum analysis, spectrograms display both frequency and amplitude changes over time. Time-correlated measurements can be made across the frequency, phase, amplitude, and modulation domains. This is ideal for signal analysis that includes frequency hopping, pulse characteristics, modulation switching, settling time, bandwidth changes, and intermittent signals.
SignalVu can process RF, I and Q, and differential I and Q signals from any one of the four available oscilloscope inputs. Math functions applied by the oscilloscope are also utilized by SignalVu allowing users to apply custom filtering prior to vector signal analysis.
Options Tailored for Your Wideband Applications
SignalVu vector signal analysis software is available for all MSO/DPO5000, DPO7000, and DPO/DSA/MSO70000 Series oscilloscopes and offers options to meet your specific application, whether it be wideband radar characterization, broadband satellite, or spectrum management. SignalVu Essentials (Opt. SVE) provides the fundamental capability for all measurements and is required for pulse analysis (Opt. SVP), settling time (Opt. SVT), digital modulation analysis (Opt. SVM), flexible OFDM analysis (Opt. SVO), and AM/FM/PM Modulation and Audio Measurements (Opt. SVA).
Measurement Functions
Measurements | Description |
|---|
Spectrum Analyzer Measurements (Opt. SVE) | Channel Power, Adjacent Channel Power, Multicarrier Adjacent Channel Power/Leakage Ratio, Occupied Bandwidth, xdB Down, dBm/Hz Marker, dBc/Hz Marker |
Time Domain and Statistical Measurements (Opt. SVE) | RF IQ vs. Time, Amplitude vs. Time, Power vs. Time, Frequency vs. Time, Phase vs. Time, CCDF, Peak-to-Average Ratio, Amplitude, Frequency, and Phase Modulation Analysis |
Spur Search Measurement (Opt. SVE) | Up to 20 ranges, user-selected detectors (peak, average, CISPR peak), filters (RBW, CISPR, MIL) and VBW in each range. Linear or Log frequency scale. Measurements and violations in absolute power or relative to a carrier. Up to 999 violations identified in tabular form for export in CSV format |
AM/FM/PM Modulation and Audio Measurements (Opt. SVA) | Carrier Power, Frequency Error, Modulation Frequency, Modulation Parameters (±peak, peak-peak/2, RMS), SINAD, Modulation Distortion, S/N, THD, TNHD, Hum and Noise |
Settling Time (Frequency and Phase) (Opt. SVT) | Measured Frequency, Settling Time from last settled frequency, Settling Time from last settled phase, Settling Time from Trigger. Automatic or manual reference frequency selection. User-adjustable measurement bandwidth, averaging, and smoothing. Pass/Fail Mask Testing with 3 user-settable zones |
Advanced Signal Analysis (Opt. SVP) | Average On Power, Peak Power, Average Transmitted Power, Pulse Width, Rise Time, Fall Time, Repetition Interval (seconds), Repetition Interval (Hz), Duty Factor (%), Duty Factor (ratio), Ripple (dB), Ripple (%), Droop (dB), Droop (%), Overshoot (dB), Overshoot (%), Pulse-Pulse Frequency Difference, Pulse-Pulse Phase Difference, RMS Frequency Error, Max Frequency Error, RMS Phase Error, Max Phase Error, Frequency Deviation, Phase Deviation, Impulse Response (dB), Impulse Response (time), Time Stamp |
Flexible OFDM Analysis (Opt. SVO) | OFDM analysis for WLAN 802.11a/g/j and WiMAX 802.16-2004. Constellation, Scalar Measurement Summary, EVM or Power vs. Carrier, Symbol Table (Binary or Hexadecimal) |
General Purpose Digital Modulation Analysis (Opt. SVM) | Error Vector Magnitude (EVM) (RMS, Peak, EVM vs. Time), Modulation Error Ratio (MER), Magnitude Error (RMS, Peak, Mag Error vs. Time), Phase Error (RMS, Peak, Phase Error vs. Time), Origin Offset, Frequency Error, Gain Imbalance, Quadrature Error, Rho, Constellation, Symbol Table FSK only: Frequency Deviation, Symbol Timing Error |
The Microsoft Windows environment makes this multidomain analysis even easier with an unlimited number of analysis windows, all time-correlated, to provide deeper insight into signal behavior. A user interface that adapts to your preferences (keyboard, front panel, touch screen, and mouse) makes learning SignalVu easy for both first-time users and experienced hands.

Time-correlated, multidomain view provides a new level of insight into design or operational problems not possible with conventional analysis solutions. Here, the hop patterns of a narrowband signal can be observed using Spectrogram (lower left) and its hop characteristics can be precisely measured with Frequency vs, Time display (upper left). The time and frequency responses can be observed in the two right-hand views as the signal hops from one frequency to the next.

The Advanced Signal Analysis package (Opt. SVP) provides 27 individual measurements to automatically characterize long pulse trains. An 800 MHz wide LFM chirp centered at 18 GHz is seen here with measurements for pulses 7 through 18 (upper right). The shape of the pulse can be seen in the Amplitude vs. Time plot shown in the upper left. Detailed views of pulse #8’s frequency deviation and parabolic phase trajectory are shown in the lower two views.

Wideband satellite and point-to-point microwave links can be directly observed with SignalVu analysis software. Here, General Purpose Digital Modulation Analysis (Opt. SVM) is demodulating a 16QAM backhaul link running at 312.5 MS/s.

Settling time measurements (Opt. SVT) are easy and automated. The user can select measurement bandwidth, tolerance bands, reference frequency (auto or manual), and establish up to 3 tolerance bands vs. time for Pass/Fail testing. Settling time may be referenced to external or internal trigger, and from the last settled frequency or phase. In the illustration, frequency settling time for a hopped oscillator is measured from an external trigger point from the device under test.