Spectrum Analyzers Datasheet

SPECMON Series

Features & Benefits

SPECMON Series 3.0 and 6.2 GHz Real-time Spectrum Analyzers
  • Leading real time technologies help to troubleshoot the toughest transient interferences in the field
    • Unique Swept DPX ™ enables the customer to “Real-Time Scan” the whole 3/6.2 GHz frequency range for transient interference discovery (Opt. 200)
    • Up to 110 MHz ultra-wide real-time BW for “close-in” signal discovery, capture and real-time demodulation
    • Unmatched ability to discover and capture signals with as short as 3.7us duration with 100% Probability of Intercept (POI) (Opt. 200)
    • Exceptional DPX Density Trigger/Trigger on This ™ (Opt. 200), Frequency Mask Trigger (Opt. 52) and other advanced triggering capabilities provide 100% probability of intercept for signals as short as 3.7 μs in the frequency domain and 12 ns in the time domain
    • Save hours of post-capture review time with optional advanced triggering capabilities such as Save-on-Trigger, which intelligently saves events of interest automatically
  • Integrated solution design reduces total cost of ownership with lower initial purchase cost and annual maintenance cost
    • Both manual and automatic drive test are supported by built-in mapping software. Commercial off-the-shelf 3rd party GPS receiver supported via USB or Bluetooth connection
    • Field pulse analysis (for example, airport radar) is easier than ever with automated Pulse Analysis suite
    • Save up to 12 years of gap-free DPX Spectrogram/Real-Time Waterfall Traces (Opt. 53) or up to 7 seconds of IQ data at full 110 MHz BW (Opt. 110) with extra-large real-time memory, eliminating the need for an external data recorder in many cases
    • Full 110 MHz bandwidth real-time IQ data can be streamed to external, data recording devices (Opt. 55) for comprehensive post analysis
    • Instrumentation needs for frequency-domain, modulation-domain and time-domain analysis are simplified by native 3-in-1 multiple-domain correlation and analysis capability
    • Modulation analysis for 20+ general purpose analog and digital signal types, including AM/FM demodulation and flexible OFDM signal analysis
    • Built-in versatile field measurement items including Field Strength, Signal Strength, EMI test, Channel Power, ACPR, OBW, and Spurious Search
    • Ruggedness and data security achieved with standard field-removable solid-state drive
  • Open data format improves asset utilization through compatibility with industry-standard products
    • Captured IQ data can be saved into Matlab, CSV or other formats for use with third-party software analysis tools
    • RSA MAP supports MapInfo format and scanned version maps, also supports exporting to popular Google Earth and MapInfo map format for post analysis
    • Open interface for integration into customer applications
  • Ease-of-use platform improves field-test efficiency and lowers system training cost
    • 10.4 inch ultra-bright touchscreen display
    • Windows 7 Ultimate (64-bit) with support to Microsoft language localization

Applications

  • Spectrum Management – Reduce Time to Intercept and Identify Known and Unknown Signals

Integrated Real-Time Solution to Your Toughest Field Interference Challenges


Advanced Triggers and Swept DPX re-invents the way swept spectrum analysis is done. The DPX engine collects hundreds of thousands of spectrums per second over a 110 MHz bandwidth. Users can sweep the DPX across the full input range of the SPECMON Series, up to 6.2 GHz. In the time a traditional spectrum analyzer has captured one spectrum, the SPECMON Series has captured orders of magnitude more spectrums. This new level of performance reduces the chance of missing time-interleaved and transient signals during broadband searches.


Advanced Triggers, Swept DPX, and Zero Span (Opt. 200) provides superior swept spectrum analysis for transient signals. Here, a 150 MHz swath of spectrum is swept across the ISM band. Multiple WLAN signals are seen, and narrow signals seen in the blue peak-hold trace are Bluetooth access probes. Multiple interfering signals are seen below the analyzers noise level in the multi-color DPX display.


DPX Spectrograms (Opt. 200) provide gap-free spectral monitoring for up to 12 years at a time. 60,000 traces can be recorded and reviewed, with resolution per line adjustable from 110 µs to 6400 s.

Discover

The patented DPX® spectrum processing engine brings live analysis of transient events to spectrum analyzers. Performing up to 292,000 frequency transforms per second, transients of a minimum event duration of 3.7 μs in length are displayed in the frequency domain. This is orders of magnitude faster than swept analysis techniques. Events can be color coded by rate of occurrence onto a bitmapped display, providing unparalleled insight into transient signal behavior. The DPX spectrum processor can be swept over the entire frequency range of the instrument, enabling broadband transient capture previously unavailable in any spectrum analyzer. In applications that require only spectral information, Opt. 200 provides gap-free spectral recording, replay, and analysis of up to 60,000 spectral traces. Spectrum recording resolution is variable from 110 µs to 6400 s per line.

Trigger

Revolutionary DPX® spectrum display reveals transient signal behavior that helps you discover instability, glitches, and interference. Here, three distinct signals can be seen. Two high-level signals of different frequency-of-occurrence are seen in light and dark blue, and a third signal beneath the center signal can also be discerned. The DPX Density™ trigger allows the user to acquire signals for analysis only when this third signal is present. Trigger On This™ has been activated, and a density measurement box is automatically opened, measuring a signal density 7.275%. Any signal density greater than the measured value will cause a trigger event.


Trigger and Capture: The DPX Density™ Trigger monitors for changes in the frequency domain, and captures any violations into memory. The spectrogram display (left panel) shows frequency and amplitude changing over time. By selecting the point in time in the spectrogram where the spectrum violation triggered the DPX Density™ Trigger, the frequency domain view (right panel) automatically updates to show the detailed spectrum view at that precise moment in time.

Tektronix has a long history of innovative triggering capability, and the SPECMON Series spectrum analyzers lead the industry in triggered signal analysis. The SPECMON Series provides unique triggers essential for troubleshooting modern digitally implemented RF systems. Includes time-qualified power, runt, density, frequency, and frequency mask triggers.

Time qualification can be applied to any internal trigger source, enabling capture of ‘the short pulse’ or ‘the long pulse’ in a pulse train, or, when applied to the Frequency Mask Trigger, only triggering when a frequency domain event lasts for a specified time. Runt triggers capture troublesome infrequent pulses that either turn on or turn off to an incorrect level, greatly reducing time to fault.

DPX Density™ Trigger works on the measured frequency of occurrence or density of the DPX display. The unique Trigger On This™ function allows the user to simply point at the signal of interest on the DPX display, and a trigger level is automatically set to trigger slightly below the measured density level. You can capture low-level signals in the presence of high-level signals at the click of a button.

The Frequency Mask Trigger (FMT) is easily configured to monitor all changes in frequency occupancy within the acquisition bandwidth.

A Power Trigger working in the time domain can be armed to monitor for a user-set power threshold. Resolution bandwidths may be used with the power trigger for band limiting and noise reduction. Two external triggers are available for synchronization to test system events.

Capture

Capture once – make multiple measurements without recapturing. All signals in an acquisition bandwidth are recorded into the SPECMON Series deep memory. Record lengths vary depending upon the selected acquisition bandwidth – up to 7 seconds at 110 MHz, 343 seconds at 1 MHz, or 6.1 hours at 10 kHz bandwidth with Memory Extension (Opt. 53). Real-time capture of small signals in the presence of large signals is enabled with 73 dB SFDR in all acquisition bandwidths, even up to 110 MHz (Opt. 110). Acquisitions of any length can stored in MATLAB™ Level 5 format for offline analysis.

Analyze

Advanced Signal Analysis package offers over 20 automated pulse parameter calculations on every pulse. Easily validate designs with measurements of peak power, pulse width rise time, ripple, droop, overshoot, and pulse-to-pulse phase. Gain insight into linear FM chirp quality with measurements such as Impulse Response and Phase Error. A pulse train (upper left) is seen with automatic calculation of pulse width and impulse response (lower right). A detailed view of the Impulse Response is seen in the lower left, and a DPX® display monitors the spectrum on the upper right.

The SPECMON Series offers analysis capabilities that advance productivity for engineers working on components or in RF system design, integration, and performance verification, or operations engineers working in networks, or spectrum management. In addition to spectrum analysis, spectrograms display both frequency and amplitude changes over time. Time-correlated measurements can be made across the frequency, phase, amplitude, and modulation domains. This is ideal for signal analysis that includes frequency hopping, pulse characteristics, modulation switching, settling time, bandwidth changes, and intermittent signals.

The measurement capabilities of the SPECMON Series and available options and software packages are summarized below:

Measurement Functions

Measurements

Description

Spectrum Analyzer Measurements

Channel Power, Adjacent Channel Power, Multicarrier Adjacent Channel Power/Leakage Ratio, Occupied Bandwidth, xdB Down, dBm/Hz Marker, dBc/Hz Marker

Time Domain and Statistical Measurements

RF IQ vs. Time, Power vs. Time, Frequency vs. Time, Phase vs. Time, CCDF, Peak-to-Average Ratio

Spur Search Measurement

Up to 20 frequency ranges, user-selected detectors (Peak, Average, QP), filters (RBW, CISPR, MIL), and VBW in each range. Linear or Log frequency scale. Measurements and violations in absolute power or relative to a carrier. Up to 999 violations identified in tabular form for export in .CSV format

Analog Modulation Analysis Measurement Functions

% Amplitude Modulation (+, –, Total)

Frequency Modulation (±Peak, +Peak, –Peak, RMS, Peak-Peak/2, Frequency Error)

Phase Modulation (±Peak, RMS, +Peak, –Peak)

AM/FM/PM Modulation and Audio Measurements (Opt. 10)

Carrier Power, Frequency Error, Modulation Frequency, Modulation Parameters (±Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, THD, TNHD

Phase Noise and Jitter Measurements (Opt. 11)

10 Hz to 1 GHz Frequency Offset Range, Log Frequency Scale

Traces – 2: ±Peak Trace, Average Trace, Trace Smoothing, and Averaging

Settling Time (Frequency and Phase) (Opt. 12)

Measured Frequency, Settling Time from last settled frequency, Settling Time from last settled phase, Settling Time from Trigger. Automatic or manual reference frequency selection. User-adjustable measurement bandwidth, averaging, and smoothing. Pass/Fail Mask Testing with 3 user-settable zones

Advanced Pulse Measurements Suite

Average On Power, Peak Power, Average Transmitted Power, Pulse Width, Rise Time, Fall Time, Repetition Interval (Seconds), Repetition Interval (Hz), Duty Factor (%), Duty Factor (Ratio), Ripple (dB), Ripple (%), Overshoot (dB), Overshoot (%), Droop (dB), Droop (%), Pulse-Pulse Frequency Difference, Pulse-Pulse Phase Difference, RMS Frequency Error, Max Frequency Error, RMS Phase Error, Max Phase Error, Frequency Deviation, Phase Deviation, Impulse Response (dB), Impulse Response (Time), Time Stamp

General Purpose Digital Modulation Analysis (Opt. 21)

Error Vector Magnitude (EVM) (RMS, Peak, EVM vs. Time), Modulation Error Ratio (MER), Magnitude Error (RMS, Peak, Mag Error vs. Time), Phase Error (RMS, Peak, Phase Error vs. Time), Origin Offset, Frequency Error, Gain Imbalance, Quadrature Error, Rho, Constellation, Symbol Table

Flexible OFDM Analysis (Opt. 22)

OFDM Analysis for WLAN 802.11a/j/g and WiMAX 802.16-2004

DPX Density Measurement (Opt. 200)

Measures % signal density at any location on the DPX spectrum display and triggers on specified signal density

RSAVu Analysis Software

W-CDMA, HSUPA. HSDPA, GSM/EDGE, CDMA2000 1x, CDMA2000 1xEV-DO, RFID, Phase Noise, Jitter, IEEE 802.11 a/b/g/n WLAN, IEEE 802.15.4 OQPSK (Zigbee), Audio Analysis


Time-correlated views in multiple domains provide a new level of insight into design problems not possible with conventional analyzers. Here, ACLR and modulation quality are performed simultaneously in a single acquisition, combined with the continuous monitoring of the DPX® spectrum display.


Spurious Search – Up to 20 noncontiguous frequency regions can be defined, each with their own resolution bandwidth, video bandwidth, detector (peak, average, quasi-peak), and limit ranges. Test results can be exported in .CSV format to external programs, with up to 999 violations reported. Spectrum results are available in linear or log scale.


Audio monitoring and modulation measurements simultaneously can make spectrum management an easier, faster task. Here, the DPX spectrum display shows a live spectrum of the signal of interest and simultaneously provides demodulated audio to the internal instrument loudspeaker. FM deviation measurements are seen in the right side of the display for the same signal.


Phase noise and jitter measurements (Opt. 11) on the SPECMON Series may reduce the cost of your measurements by reducing the need for a dedicated phase noise tester. Outstanding phase noise across the operating range provides margin for many applications. Here, phase noise on a 13 MHz carrier is measured at –119 dBc/Hz at 10 kHz offset. The instrument phase noise of < –134 dBc/Hz at this frequency provides ample measurement margin for the task.


Settling time measurements (Opt. 12) are easy and automated. The user can select measurement bandwidth, tolerance bands, reference frequency (auto or manual), and establish up to 3 tolerance bands vs. time for Pass/Fail testing. Settling time may be referenced to external or internal trigger, and from the last settled frequency or phase. In the illustration, frequency settling time for a hopped oscillator is measured from an external trigger point from the device under test.


DPX Zero-span produces real-time analysis in amplitude, frequency, or phase vs. time. Up to 50,000 waveforms per second are processed. DPX Zero-span ensures that all time-domain anomalies are immediately found, reducing time-to-fault. Here, three distinct pulse shapes are captured in zero-span amplitude vs. time. Two of the three waveforms occur only once in 10,000 pulses, but all are displayed with DPX.

Integrated Solution for Mapping

SPECMON series Real-Time Spectrum Analyzers provide an integrated solution for field interference and coverage problems. The built-in RSA Map lets you use an on-screen map to record the location and value of SPECMON measurements.

With RSA Map you can do the following:

  • Select a measurement and touch the displayed map where you want the measurement to be placed
  • Use a GPS receiver (customer supplied) to automatically position measurements at your current location (on maps with geophysical reference information)
  • Collect and export measurement data (and position data when using a GPS receiver) to common formats to help analyze measurements (position, value, and direction) and prepare reports to resolve interference problems

RSA Map uses MapInfo format map files (.mif) or Windows bitmap files (.bmp) to indicate location. The .bmp format map files can be either geo-referenced or non-geo-referenced. Saved test results give you complete measurement data along with exporting compatibility to Google Earth (.kmz) and Mapinfo (MIF/MID) formats.


Locate interference with azimuth direction function. It lets you draw a line or an arrow on a mapped measurement to indicate the direction your antenna was pointing when you take a measurement. User label can also be displayed (this example shows real time DPX measurement taken from Hospital, School and Park Lot)


Both manual and automatic drive test measurements are supported. The Repeat measurements function automatically takes measurements at a user-set time or distance interval.

Characteristics

Frequency Related

Characteristic

Description

Frequency Range

1 Hz to 3.0 GHz (SPECMON3)

1 Hz to 6.2 GHz (SPECMON6)

Initial Center Frequency Setting Accuracy

Within 10–7 after 10 minute warm-up

Center Frequency Setting Resolution

0.1 Hz

Frequency Marker Readout Accuracy

±(RE × MF + 0.001 × Span + 2) Hz

   RE

Reference Frequency Error

   MF

Marker Frequency (Hz)

Span Accuracy

±0.3% of Span (Auto mode)

Reference Frequency

   Initial accuracy at cal

1 × 10–7 (after 10 minute warm-up)

   Aging per day

1 × 10–9 (after 30 days of operation)

   Aging per 10 years

3 × 10–7 (after 10 years of operation)

   Temperature drift

2 × 10–8 (5 to 40 °C)

   Cumulative error (temperature + aging)

4 × 10–7 (within 10 years after calibration, typical)

Reference Output Level

>0 dBm (internal or external reference selected), +4 dBm, typical

External Reference Input Frequency

10 MHz ±30 Hz

External Reference Input Frequency Requirements

Spurious level on input must be < –80 dBc within 100 kHz offset to avoid on-screen spurs

   Spurious

< –80 dBc within 100 kHz offset

   Input level range

–10 dBm to +6 dBm

Trigger Related

Characteristic

Description

Trigger Modes

Free Run, Triggered, FastFrame

Trigger Event Source

RF Input, Trigger 1 (Front Panel), Trigger 2 (Rear Panel), Gated, Line

Trigger Types

Power (Std), Frequency Mask (Opt. 52), Frequency Edge, DPX Density, Runt, Time Qualified (Opt. 200)

Trigger Setting

Trigger position settable from 1 to 99% of total acquisition length

Trigger Combinational Logic

Trig 1 AND Trig 2 / Gate may be defined as a trigger event

Trigger Actions

Save acquisition and/or save picture on trigger

Power Level Trigger

Characteristic

Description

Level Range

0 dB to –100 dB from reference level

Accuracy

   (for trigger levels >30 dB above noise floor, 10% to 90% of signal level)

±0.5 dB (level ≥ –50 dB from reference level)

±1.5 dB (from < –50 dB to –70 dB from reference level)

Trigger Bandwidth Range

   (at maximum acquisition BW)

4 kHz to 10 MHz + wide open (standard)

4 kHz to 20 MHz + wide open (Opt. 40)

11 kHz to 40 MHz + wide open (Opt. 110)

Trigger Position Timing Uncertainty

   25 MHz Acquisition BW, 10 MHz BW (Std.)

Uncertainty = ±15 ns

   40 MHz Acquisition BW, 20 MHz BW (Opt. 40)

Uncertainty = ±10 ns

   110 MHz Acquisition BW, 40 MHz BW (Opt. 110)

Uncertainty = ±5 ns

Trigger Re-Arm Time, Minimum (Fast Frame ‘On’)

   10 MHz Acquisition BW

≤25 μs

   40 MHz Acquisition BW (Opt. 40)

≤10 μs

   110 MHz Acquisition BW (Opt. 110)

≤5 μs

Minimum Event Duration (Filter = Off)

   25 MHz Acquisition BW (Std.)

40 ns

   40 MHz Acquisition BW (Opt. 40)

25 ns

   110 MHz Acquisition BW (Opt. 110)

12 ns

External Trigger 1

Level Range

–2.5 V to +2.5 V

Level Setting Resolution

0.01 V

Trigger Position Timing Uncertainty (50 Ω input impedance)

   25 MHz Acquisition BW, 25 MHz Span (Std.)

Uncertainty = ±20 ns

   40 MHz Acquisition BW, 40 MHz Span (Opt. 40)

Uncertainty = ±15 ns

   110 MHz Acquisition BW, 110 MHz Span (Opt. 110)

Uncertainty = ±12 ns

Input Impedance

Selectable 50 Ω/5 kΩ impedance (nominal)

External Trigger 2

Threshold Voltage

Fixed, TTL

Input Impedance

10 kΩ (nominal)

Trigger State Select

High, Low

Trigger Output

Voltage (Output Current <1 mA)

   High:

>2.0 V

   Low:

<0.4 V

Advanced trigger specifications are found in sections on Opt. 52 (Frequency Mask Trigger) and Opt. 200 (DPX, Time Qualified, Runt, and Frequency Edge triggers)

Acquisition Related

Characteristic

Description

Real-time Acquisition Bandwidth

25 MHz (Std.)

40 MHz (Opt. 40)

110 MHz (Opt. 110)

A/D Converter

100 MS/s, 14 bit (optional 300 MS/s, 14 bit, Opt. 40/110)

Acquisition Memory Size

1 GB (4 GB, Opt. 53)

Minimum Acquisition Length

64 Samples

Acquisition Length Setting Resolution

1 Sample

Fast Frame Acquisition Mode

>64,000 records can be stored in a single acquisition (for pulse measurements and spectrogram analysis)

Memory Depth (Time) and Minimum Time Domain Resolution

Acquisition BW

Sample Rate

(For I and Q)

Record Length

Record Length

(Opt. 53)

Time Resolution

110 MHz (Opt. 110)

150 MS/s

1.79 s

7.15 s

6.6667 ns

40 MHz (Opt. 40)

75 MS/s

3.57 s

14.3 s

13.33 ns

25 MHz

50 MS/s

4.77 s

19.0 s

20 ns

20 MHz

25 MS/s

9.54 s

38.1 s

40 ns

10 MHz

12.5 MS/s

19.0 s

76.3 s

80 ns

5 MHz

6.25 MS/s

38.1 s

152.7 s

160 ns

2 MHz*1

3.125 MS/s

42.9 s

171.7 s

320 ns

1 MHz

1.56 MS/s

85.8 s

343.5 s

640 ns

500 kHz

781 kS/s

171.7 s

687.1 s

1.28 μs

200 kHz

390 kS/s

343.5 s

1347 s

2.56 μs

100 kHz

195 kS/s

687.1 s

2748 s

5.12 μs

50 kHz

97.6 kS/s

1374 s

55497 s

10.24 μs

20 kHz

48.8 kS/s

2748 s

10955 s

20.48 μs

10 kHz

24.4 kS/s

5497 s

21990 s

40.96 μs

5 kHz

12.2 kS/s

10955 s

43980 s

81.92 μs

2 kHz

3.05 kS/s

43980 s

175921 s

328 μs

1 kHz

1.52 kS/s

87960 s

351843 s

655 μs

500 Hz

762 S/s

175921 s

703687 s

1.31 ms

200 Hz

381 S/s

351843 s

1407374 s

2.62 ms

100 Hz

190 S/s

703686 s

2814749 s

5.24 ms

*1 In spans ≤2 MHz, higher resolution data is stored.

Analysis Related

Available Displays

Views

Frequency

Spectrum (Amplitude vs Linear or Log Frequency)

DPX® Spectrum Display (Live RF Color-graded Spectrum)

Spectrogram (Amplitude vs. Frequency over Time)

Spurious (Amplitude vs Linear or Log Frequency)

Phase Noise (Phase Noise and Jitter Measurement) (Opt. 11)

Time and Statistics

Amplitude vs. Time

Frequency vs. Time

Phase vs. Time

DPX Amplitude vs. Time (Opt. 200)

DPX Frequency vs. Time (Opt. 200)

DPX Phase vs. Time (Opt. 200)

Amplitude Modulation vs. Time

Frequency Modulation vs. Time

Phase Modulation vs. Time

RF IQ vs. Time

Time Overview

CCDF

Peak-to-Average Ratio

Settling Time, Frequency, and Phase (Opt. 12)

Frequency Settling vs. Time, Phase Settling vs. Time

Advanced Measurements Suite

Pulse Results Table

Pulse Trace (selectable by pulse number)

Pulse Statistics (Trend of Pulse Results, FFT of Trend, and Histogram)

Digital Demod (Opt. 21)

Constellation Diagram

EVM vs. Time

Symbol Table (Binary or Hexadecimal)

Magnitude and Phase Error versus Time, and Signal Quality

Demodulated IQ vs. Time

Eye Diagram

Trellis Diagram

Frequency Deviation vs. Time

Flexible OFDM Analysis (Opt. 22)

Constellation, Scalar Measurement Summary

EVM or Power vs. Carrier

Symbol Table (Binary or Hexadecimal)

Frequency Offset Measurement

Signal analysis can be performed either at center frequency or the assigned measurement frequency up to the limits of the instrument's acquisition and measurement bandwidths

RF Spectrum and Analysis Performance

Bandwidth Related

Characteristic

Description

Resolution Bandwidth

Resolution Bandwidth Range

(Spectrum Analysis)

0.1 Hz to 5 MHz (10 MHz, Opt. 110) (1, 2, 3, 5 sequence, Auto-coupled), or user selected (arbitrary)

Resolution Bandwidth Shape

Approximately Gaussian, shape factor 4.1:1 (60:3 dB) ±10%, typical

Resolution Bandwidth Accuracy

±1% (Auto-coupled RBW mode)

Alternative Resolution Bandwidth Types

Kaiser window (RBW), –6 dB Mil, CISPR, Blackman-Harris 4B Window, Uniform (none) Window, Flat-top (CW Ampl.) Window, Hanning Window

Video Bandwidth

Video Bandwidth Range

1 Hz to 5 MHz plus wide open

RBW/VBW Maximum

10,000:1

RBW/VBW Minimum

1:1 plus wide open

Resolution

5% of entered value

Accuracy (Typical, Detector: Average)

±10%

Time Domain Bandwidth (Amplitude vs. Time Display)

Time Domain Bandwidth Range

At least 1/10 to 1/10,000 of acquisition bandwidth, 1 Hz minimum

Time Domain BW Shape

≤10 MHz, approximately Gaussian, shape factor 4.1:1 (60:3 dB), ±10% typical

20 MHz (60 MHz, Opt. 110), shape factor <2.5:1 (60:3 dB) typical

Time Domain Bandwidth Accuracy

1 Hz to 20 MHz, and (>20 MHz to 60 MHz Opt. 110), ±10%

Minimum Settable Spectrum Analysis RBW vs. Span

Frequency Span

RBW

>10 MHz

100 Hz

>1.25 MHz to 10 MHz

10 Hz

≤1 MHz

1 Hz

≤100 kHz

0.1 Hz

Spectrum Display Traces, Detector, and Functions

Characteristic

Description

Traces

Three traces + 1 math waveform + 1 trace from spectrogram for spectrum display

Detector

Peak, –Peak, Average (VRMS), ±Peak, Sample, CISPR (Avg, Peak, Quasi-peak Average (of Logs))

Trace Functions

Normal, Average, Max Hold, Min Hold, Average (of Logs)

Spectrum Trace Length

801, 2401, 4001, 8001, or 10401 points

Sweep Speed (Typical. RBW = Auto, RF/IF Optimization: minimize sweep time)

1500 MHz/s (Std.)

2500 MHz/s (Opt. 40)

6000 MHz/s (Opt. 110)

DPX® Digital Phosphor Spectrum Processing

Characteristic

DPX

(Standard)

Advanced DPX

(Opt. 200)

Spectrum Processing Rate (RBW = Auto, Trace Length 801)

48,828/s

292,969/s

DPX Bitmap Resolution

201 × 501

201 × 801

DPX Bitmap Color Dynamic Range

64k (48 dB)

8G (99 dB)

Marker Information

Amplitude, frequency, and hit count on the DPX display

Amplitude, frequency, and signal density on the DPX display

Minimum Signal Duration for 100% Probability of Detection (Max-hold On)

31 μs (Std. or Opt. 40)

24 μs (Opt. 110)

3.7 μs (Std., or Opt. 40/110, RBW = 10 MHz)

Span Range

(Continuous processing)

100 Hz to 25 MHz

(40 MHz with Opt. 40)

(110 MHz with Opt. 110)

100 Hz to 25 MHz

(40 MHz with Opt. 40)

(110 MHz with Opt. 110)

Span Range (Swept)

Not Available

Up to instrument frequency range

Dwell Time per Step

Not Available

50 ms to 100 s

Trace Processing

Color-graded bitmap, +Peak, –Peak, Average

Color-graded bitmap, +Peak, –Peak, Average

Trace Length

501

801, 2401, 4001, 10401

Resolution BW Accuracy

7%

±1%

Note: For complete Advanced DPX specifications, see the Opt. 200 section of this data sheet.

 

Minimum RBW, Swept Spans (Opt. 200) - 10 kHz.

Stability

Residual FM - <2 Hzp-p in 1 second (95% confidence, typical).

Phase Noise Sidebands, dBc/Hz at Specified Center Frequency (CF)

Offset

CF= 10 MHz

CF = 1 GHz

CF = 2 GHz

CF = 6 GHz

Typical

Spec

Typical

Typical

Typical

1 kHz

–128

–103

–107

–107

–104

10 kHz

–134

–109

–113

–112

–109

100 kHz

–134

–112

–116

–115

–114

1 MHz

–135

–130

–139

–137

–135

6 MHz

–140

–134

–144

–142

–141

10 MHz

NA

–135

–144

–142

–141

Integrated Phase (100 Hz to 100 MHz, typical)

Measurement Frequency

Integrated Phase, Radians

100 MHz

2.51 × 10–3

1 GHz

3.14 × 10–3

2 GHz

3.77 × 10–3

5 GHz

6.28 × 10–3


Typical phase noise performance as measured by Opt. 11.

Amplitude

Characteristic

Description

(Specifications excluding mismatch error)

Measurement Range

Displayed average noise level to maximum measurable input

Input Attenuator Range

0 dB to 55 dB, 5 dB step

Maximum Safe Input Level

   Average Continuous (RF ATT ≥10 dB, Preamp Off)

+30 dBm

   Average Continuous (RF ATT ≥10 dB, Preamp On)

+20 dBm

   Pulsed RF (RF ATT ≥30 dB, PW <10 μs, 1% Duty Cycle)

50 W

Maximum Measurable Input Level

   Average Continuous (RF ATT: Auto)

+30 dBm

   Pulsed RF (RF ATT: Auto, PW <10 μs, 1% Duty Cycle)

50 W

Max DC Voltage

±5 V

Log Display Range

0.01 dBm/div to 20 dB/div

Display Divisions

10 divisions

Display Units

dBm, dBmV, Watts, Volts, Amps, dBuW, dBuV, dBuA, dBW, dBV, dBV/m, and dBA/m

Marker Readout Resolution, dB Units

0.01 dB

Marker Readout Resolution, Volts Units

Reference-level dependent, as small as 0.001 μV

Reference Level Setting Range

0.1 dB step, –170 dBm to +50 dBm (minimum ref. level –50 dBm at center frequency <80 MHz)

Level Linearity

±0.1 dB (0 to –70 dB from reference level)

Frequency Response

Range

Response

18 °C to 28 °C, Atten. = 10 dB, Preamp Off

   10 MHz to 32 MHz (LF Band)

±0.7 dB

   10 MHz to 3 GHz

±0.35 dB

   >3 GHz to 6.2 GHz (SPECMON6)

±0.5 dB

5 °C to 40 °C, All Attenuator Settings (Typical, Preamp Off)

   1 Hz to 32 MHz (LF Band)

±0.8 dB

   9 kHz to 3 GHz

±0.5 dB

   >3 GHz to 6.2 GHz (SPECMON6)

±1.0 dB

Preamp On (Atten. = 10 dB)

   10 MHz to 32 MHz (LF Band)

±0.8 dB

   1 MHz to 3 GHz

±0.8 dB

   >3 GHz to 6.2 GHz (SPECMON6)

±1.3 dB

Amplitude Accuracy

Characteristic

Description

Absolute Amplitude Accuracy at Calibration Point (100 MHz, –20 dBm signal, 10 dB ATT, 18 °C to 28 °C)

±0.31 dB

Input Attenuator Switching Uncertainty

±0.3 dB

Absolute Amplitude Accuracy at Center Frequency, 95% Confidence*2

   10 MHz to 3 GHz

±0.5 dB

   3 GHz to 6.2 GHz(SPECMON6)

±0.8 dB

VSWR

(Atten. = 10 dB, Preamp Off, CF set within 200 MHz of VSWR Test Frequency)

   10 kHz to <10 MHz

<1.6:1 (Typical)

   10 MHz to 3 GHz

<1.4:1

   >3 GHz to 6.2 GHz (SPECMON6)

<1.6:1

VSWR with Preamp

(Atten. = 10 dB, Preamp On, CF set within 200 MHz of VSWR Test Frequency

   10 MHz to 3/6.2 GHz

<1.6:1

*2 18 °C to 28 °C, Ref Level ≤ –15 dBm, Attenuator Auto-coupled, Signal Level –15 dBm to –50 dBm. 10 Hz ≤ RBW ≤ 1 MHz, after alignment performed.

Noise and Distortion

3rd Order Intermodulation Distortion: –84 dBc at 2.13 GHz (Specified)*3

Frequency Range

3rd Order Intermodulation Distortion, dBc (Typical)

3rd Order Intercept, dBm (Typical)

10 kHz to 32 MHz (LF Band)

–75

+12.5

9 kHz to 80 MHz

–72

+11

>80 MHz to 300 MHz

–76

+13

>300 MHz to 3 GHz

–84

+17

>3 GHz to 6.2 GHz

–84

+17

*3 Each Signal Level –25 dBm, Ref Level –20 dBm, Attenuator = 0 dB, 1 MHz tone separation.

Note: 3rd order intercept point is calculated from 3rd order intermodulation performance.

2nd Harmonic Distortion*4

Frequency

2nd Harmonic Distortion, Typical

10 MHz to 1 GHz

< –80 dBc

>1 GHz to 3.1 GHz

< –83 dBc

*4 –40 dBm at RF input, Attenuator = 0, Preamp Off, typical.

Displayed Average Noise Level*5, Preamp Off

Frequency Range

Specification

Typical

LF Band

1 Hz to 100 Hz

 

–129 dBm/Hz

>100 Hz to 4 kHz

–124 dBm/Hz

–130 dBm/Hz

>4 kHz to 10 kHz

–141 dBm/Hz

–144 dBm/Hz

>10 kHz to 32 MHz

–150 dBm/Hz

–153 dBm/Hz

RF Band

9 kHz to 1 MHz

–108 dBm/Hz

–111 dBm/Hz

>1 MHz to 10 MHz

–136 dBm/Hz

–139 dBm/Hz

>10 MHz to 2 GHz

–154 dBm/Hz

–157 dBm/Hz

>2 GHz to 3 GHz

–153 dBm/Hz

–156 dBm/Hz

>3 GHz to 4 GHz (SPECMON6)

–151 dBm/Hz

–154 dBm/Hz

>4 GHz to 6.2 GHz (SPECMON6)

–149 dBm/Hz

–152 dBm/Hz

*5 Measured using 1 kHz RBW, 100 kHz span, 100 averages, Minimum Noise mode, input terminated, log-average detector and trace function.

Preamplifier Performance

Characteristic

Description

Frequency Range

1 MHz to 3.0 GHz or 6.2 GHz (SPECMON6)

Noise Figure at 2 GHz

7 dB

Gain at 2 GHz

18 dB (nominal)

Displayed Average Noise Level*5, Preamp On

Frequency Range

Specification

Typical

LF Band

1 MHz to 32 MHz

–158 dBm/Hz

–160 dBm/Hz

RF Band

1 MHz to 10 MHz

–158 dBm/Hz

–160 dBm/Hz

>10 MHz to 2 GHz

–164 dBm/Hz

–167 dBm/Hz

>2 GHz to 3 GHz

–163 dBm/Hz

–165 dBm/Hz

>3 GHz to 6.2 GHz (SPECMON6)

–161 dBm/Hz

–164 dBm/Hz

*5 Measured using 1 kHz RBW, 100 kHz span, 100 averages, Minimum Noise mode, input terminated, log-average trace detector and function.

Residual Response*6

Frequency Range

Specified

Typical

500 kHz to 32 MHz, LF Band

 

< –100 dBm

500 kHz to 80 MHz, RF Band

 

< –75 dBm

80 MHz to 200 MHz

 

< –95 dBm

200 MHz to 3 GHz

–95 dBm

 

3 GHz to 6.2 GHz (SPECMON6)

–95 dBm

 

*6 Input terminated, RBW = 1 kHz, Attenuator = 0 dB, Reference Level –30 dBm.

Image Response*7

Frequency

Spec

100 Hz to 30 MHz

< –75 dBc

30 MHz to 3 GHz

< –75 dBc

>3 GHz to 6.2 GHz

(SPECMON6)

< –65 dBc

*7 Ref = –30 dBm, Attenuator = 10 dB, RF Input Level = –30 dBm, RBW = 10 Hz.

Spurious Response with Signal, Offset ≥400 kHz*8

Frequency

Span ≤25 MHz,

Swept Spans >25 MHz

Opt. 40/110

25 MHz < Span ≤ 110 MHz

Specification

Typical

Specification

Typical

10 kHz to 32 MHz (LF Band)

–71 dBc

–75 dBc

NA

NA

30 MHz to 3 GHz

–73 dBc

–78 dBc

–73 dBc

–75 dBc

>3 GHz to 6.2 GHz

(SPECMON6)

–73 dBc

–78 dBc

–73 dBc

–75 dBc

*8 RF Input Level = –15 dBm, Attenuator = 10 dB, Mode: Auto. Input signal at center frequency. Center Frequency >90 MHz, Opt. 40/110.

Spurious Response with Signal (10 kHz ≤ offset < 400 kHz), Typical

Frequency

Span ≤ 25 MHz, Swept Spans >25 MHz

Opt. 40/110

25 MHz < Span ≤ 110 MHz

10 kHz to 32 MHz (LF Band)

–71 dBc

NA

30 MHz to 3 GHz

–73 dBc

–73 dBc

3 GHz to 6.2 GHz (SPECMON6)

–73 dBc

–73 dBc

Spurious Response with Signal at 3.5125 GHz <80 dBc (RF input level, –30 dBm)

Local Oscillator Feed-through to Input Connector < –60 dBm(typical, attenuator = 10 dB)

Adjacent Channel Leakage Ratio Dynamic Range*9

Signal Type, Measurement Mode

ACLR, Typical

Adjacent

Alternate

3GPP Downlink, 1 DPCH

   Uncorrected

–70 dB

–70 dB

   Noise Corrected

–79 dB

–79 dB

*9 Measured with test signal amplitude adjusted for optimum performance. (CF = 2.13 GHz)

IF Frequency Response and Phase Linearity*10

Frequency Range (GHz)

Acquisition Bandwidth

Amplitude Flatness (Spec)

Amplitude Flatness

(Typ, RMS)

Phase Flatness

(Typ, RMS)

0.001 to 0.032 (LF Band)

≤20 MHz

±0.50 dB

0.4 dB

1.0°

0.01 to 6.2*11

≤300 kHz

±0.10 dB

0.05 dB

0.1°

0.03 to 6.2

≤25 MHz

±0.30 dB

0.20 dB

0.5°

Opt. 40

0.03 to 6.2

≤40 MHz

±0.30 dB

0.20 dB

0.5°

Opt. 110

0.07 to 3.0

≤110 MHz

±0.50 dB

0.30 dB

1.5°

>3.0 to 6.2

≤110 MHz

±0.50 dB

0.40 dB

1.5°

*10 Amplitude flatness and phase deviation over the acquisition BW, includes RF frequency response. Attenuator Setting: 10 dB.

*11 High Dynamic Range mode selected.

Frequency Mask Trigger (Opt. 52)

Characteristic

Description

Mask Shape

User Defined

Mask Point Horizontal Resolution

<0.2% of span

Level Range

0 dB to –80 dB from reference level

Level Accuracy*12

   0 to –50 dB from reference level

±(Channel Response Flatness + 1.0 dB)

   –50 dB to –70 dB from reference level

±(Channel Response Flatness + 2.5 dB)

Span Range

100 Hz to 25 MHz

100 Hz to 40 MHz (Opt. 40)

100 Hz to 110 MHz (Opt. 110)

Trigger Position Uncertainty

Span = 25 MHz:

±15 μs

±9 μs (Opt. 200, RBW = Auto)

Span = 40 MHz (Opt. 40):

±12.8 μs

±7 μs (Opt. 200, RBW = Auto)

Span = 110 MHz (Opt. 110):

±5.12 μs

±5 μs (Opt. 200, RBW = Auto)

*12 For masks >30 dB above noise floor, Center Frequency ≥50 MHz.

Opt. 200: Advanced Triggers, Swept DPX, and DPX Zero Span

Span

RBW

(kHz)

FFT Length

Spectrums/sec

Minimum Signal Duration, 100% Probability of Intercept

(µs)

110 MHz

10,000

1024

292,968

3.7

1000

1024

292,968

5.8

300

2048

146,484

11.4

100

4096

73,242

37.6

30

16384

18,311

134.6

20

16384

18,311

174.6

40 MHz

1000

1024

292,969

5.8

300

1024

292,969

11.4

100

2048

146,484

30.8

30

4096

73,242

93.6

20

8192

36,621

147.3

10

16384

18,311

294.5

25 MHz

300

1024

292,969

11.4

100

1024

292,969

27.5

30

4096

73,242

93.8

20

4096

73,242

133.9

10

8192

36,621

267.8

 

Minimum RBW, Swept Spans (Opt. 200) - 10 kHz.

Minimum FFT Length vs. Trace Length(Independent of Span and RBW), Opt. 200

Trace Length (Points)

Minimum FFT Length

801

1024

2401

4096

4001

8192

10401

16384

Resolution BW Range vs. Acquisition Bandwidth (DPX®)

Acquisition Bandwidth

Standard

Opt. 200

RBW (Min)

RBW (Min)

RBW (Max)

110 MHz (Opt. 110)

640 kHz

20 kHz

10 MHz

55 MHz (Opt. 110)

320 kHz

10 kHz

5 MHz

40 MHz (Opt. 40/110)

320 kHz

10 kHz

5 MHz

25 MHz

214 kHz

10 kHz

3 MHz

20 MHz

107 kHz

5 kHz

2 MHz

10 MHz

53.3 kHz

2 kHz

1 MHz

5 MHz

26.7 kHz

1 kHz

500 kHz

2 MHz

13.4 kHz

500 Hz

200 kHz

1 MHz

6.66 kHz

200 Hz

100 kHz

500 kHz

3.33 kHz

100 Hz

50 kHz

200 kHz

1.67 kHz

50 Hz

20 kHz

100 kHz

833 Hz

20 Hz

10 kHz

50 kHz

417 Hz

10 Hz

5 kHz

20 kHz

209 Hz

5 Hz

2 kHz

10 kHz

105 Hz

2 Hz

1 kHz

5 kHz

52 Hz

0.1 Hz

500 Hz

2 kHz

13.1 Hz

0.1 Hz

200 Hz

1 kHz

6.51 Hz

0.1 Hz

100 Hz

500 Hz

3.26 Hz

0.1 Hz

50 Hz

200 Hz

1.63 Hz

0.1 Hz

20 Hz

100 Hz

0.819 Hz

0.1 Hz

10 Hz

Zero-span Amplitude, Frequency, Phase Performance (Nominal)

Characteristic

Description

Measurement BW Range

100 Hz to maximum acquisition bandwidth of instrument

Time Domain BW (TDBW) Range

At least 1/10 to 1/10,000 of acquisition bandwidth, 1 Hz minimum

Time Domain BW (TDBW) Accuracy

±1%

Sweep Time Range

100 ns (minimum)

   1 s (maximum, Measurement BW >60 MHz)

   2000 s (maximum, Measurement BW ≤60 MHz)

Time Accuracy

±(0.5% + Reference Frequency Accuracy)

Zero-span Trigger Timing Uncertainty (Power trigger)

±(Zero-span Sweep Time/400) at trigger point

DPX Frequency Display Range

±100 MHz maximum

DPX Phase Display Range

±200 Degrees maximum

DPX Waveforms/s

50,000 triggered waveforms/s for sweep time ≤20 μs

DPX® Spectrogram Performance

Characteristic

Description

Span Range

100 Hz to maximum acquisition bandwidth

DPX Spectrogram Trace Detection

+Peak, –Peak, Avg (VRMS)

DPX Spectrogram Trace Length

801 to 4001

DPX Spectrogram Memory Depth

Trace Length = 801: 60,000 traces

Trace Length = 2401: 20,000 traces

Trace Length = 4001: 12,000 traces

Time Resolution per Line

110 µs to 6400 s, user settable

Maximum Recording Time vs. Line Resolution

6.6 seconds (801 points/trace, 110 μs/line) to 4444 days (801 points/trace, 6400 s/line)

Opt. 200 – Advanced Triggers

Characteristic

Description

DPX Density™ Trigger

Density Range

0 to 100% density

Horizontal Range

0.25 Hz to 25 MHz (Std.)

0.25 Hz to 40 MHz (Opt. 40)

0.25 Hz to 110 MHz (Opt. 110)

Minimum Signal Duration for 100% Probability of Trigger (at maximum acquisition bandwidth)

RBW = Auto, Trace Length 801 Points

30.7 μs (Standard)

20.5 μs (Opt. 40)

11.4 μs (Opt. 40 and Opt. 200)

8.2 μs (Opt. 110 and Opt. 200)

5.8 μs (Opt. 110 and Opt. 200, RBW = 1 MHz)

Events lasting less than minimum event duration specification will result in degraded Frequency Mask Trigger accuracy

Frequency Edge Trigger

Range

±(½ × (ACQ BW or TDBW if TDBW is active))

Minimum Event Duration

12 ns (ACQ BW = 110 MHz, no TDBW, Opt. 110)

25 ns (ACQ BW = 40 MHz, no TDBW, Opt. 40)

40 ns (ACQ BW = 25 MHz, no TDBW, Standard)

Timing Uncertainty

Same as Power Trigger Position Timing Uncertainty

Runt Trigger

Runt Definitions

Positive, Negative

Accuracy

   (for trigger levels >30 dB above noise floor, 10% to 90% of signal level)

±0.5 dB (level ≥ –50 dB from reference level)

±1.5 dB (from < –50 dB to –70 dB from reference level)

Time-qualified Triggering

Trigger Types and Source

Time qualification may be applied to: Level, Frequency Mask (Opt. 02), DPX Density, Runt, Frequency Edge, Ext. 1, Ext. 2

Time Qualification Range

T1: 0 to 10 seconds

T2: 0 to 10 seconds

Time Qualification Definitions

Shorter than T1

Longer than T1

Longer than T1 AND shorter than T2

Shorter than T1 OR longer than T2

Holdoff Trigger

Range

0 to 10 seconds

Digital IQ Output (Opt. 55)

Characteristic

Description

Connector Type

MDR (3M) 50 pin × 2

Data Output

Data is corrected for amplitude and phase response in real time

   Data format

I data: 16 bit LVDS

Q data: 16 bit LVDS

Control Output

Clock: LVDS, Max 50 MHz (150 MHz, Opt. 55) DV (Data Valid), MSW (Most Significant Word) indicators, LVDS

Control Input

IQ data output enabled, connecting GND enables output of IQ data

Clock Rising Edge to Data Transition Time

(Hold time)

8.4 ns (typical, standard), 1.58 ns (typical, Opt. 110)

Data Transition to Clock Rising Edge (Setup time)

8.2 ns (typical, standard), 1.54 ns (typical, Opt. 110)

AM/FM/PM and Direct Audio Measurement (Opt. 10)

Characteristic

Description

Characteristics (typical) for input frequencies <2 GHz, RBW: Auto, Averaging: Off, Filters: Off

Analog Demodulation

Carrier Frequency Range (for modulation and audio measurements)

(1/2 × Audio Analysis Bandwidth) to maximum input frequency

Maximum Audio Frequency Span

10 MHz

Audio Filters

Low Pass (kHz)

0.3, 3, 15, 30, 80, 300, and user-entered up to 0.9 × audio bandwidth

High Pass (Hz)

20, 50, 300, 400, and user-entered up to 0.9 × audio bandwidth

Standard

CCITT, C-Message

De-emphasis (μs)

25, 50, 75, 750, and user-entered

File

User-supplied .TXT or .CSV file of amplitude/frequency pairs. Maximum 1000 pairs

FM Modulation Analysis (Modulation Index >0.1)

FM Measurements

Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+Peak, –Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

Carrier Power Accuracy (10 MHz to 2 GHz, –20 to 0 dBm input power)

±0.85 dB

Carrier Frequency Accuracy (Deviation: 1 to 10 kHz)

±0.5 Hz + (transmitter frequency × reference frequency error)

FM Deviation Accuracy (Rate: 1 kHz to 1 MHz)

±(1% of (rate + deviation) + 50 Hz)

FM Rate Accuracy (Deviation: 1 to 100 kHz)

±0.2 Hz

Residuals (FM) (Rate: 1 to 10 kHz, Deviation: 5 kHz)

THD

0.10%

Distortion

0.7%

SINAD

43 dB

AM Modulation Analysis

AM Measurements

Carrier Power, Audio Frequency, Modulation Depth (+Peak, –Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

Carrier Power Accuracy (10 MHz to 2 GHz, –20 to 0 dBm input power)

±0.85 dB

AM Depth Accuracy (Rate: 1 to 100 kHz, Depth: 10% to 90%)

±0.2% + 0.01 × measured value

AM Rate Accuracy (Rate: 1 kHz to 1 MHz, Depth: 50%)

±0.2 Hz

Residuals (AM)

THD

0.16%

Distortion

0.13%

SINAD

58 dB

PM Modulation Analysis

PM Measurements

Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+Peak, –Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

Carrier Power Accuracy (10 MHz to 2 GHz, –20 to 0 dBm input power)

±0.85 dB

Carrier Frequency Accuracy (Deviation: 0.628 rad)

±0.2 Hz + (transmitter frequency × reference frequency error)

PM Deviation Accuracy (Rate: 1 to 20 kHz, Deviation: 0.628 to 6 rad)

±100% × (0.005 + (rate / 1 MHz))

PM Rate Accuracy (Rate: 1 to 10 kHz, Deviation: 0.628 rad)

±0.2 Hz

Residuals (PM) (Rate: 1 to 10 kHz, Deviation: 0.628 rad)

THD

0.1%

Distortion

1%

SINAD

40 dB

Direct Audio Input

Audio Measurements

Signal Power, Audio Frequency (+Peak, –Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

Direct Input Frequency Range (for audio measurements only)

1 Hz to 156 kHz

Maximum Audio Frequency Span

156 kHz

Audio Frequency Accuracy

±0.2 Hz

Signal Power Accuracy

±1.5 dB

Residuals (Rate: 1 to 10 kHz, Input Level: 0.316 V)

THD

0.1%

Distortion

0.1%

SINAD

60 dB

Phase Noise and Jitter Measurement (Opt. 11)

Characteristic

Description

Carrier Frequency Range

1 MHz to maximum instrument frequency

Measurements

Carrier Power, Frequency Error, RMS Phase Noise, Jitter (Time Interval Error), Residual FM

Residual Phase Noise

See Phase Noise specifications

Phase Noise and Jitter Integration Bandwidth Range

Minimum Offset from Carrier: 10 Hz

Maximum Offset from Carrier: 1 GHz

Number of Traces

2

Trace and Measurement Functions

Detection: Average or ±Peak

Smoothing Averaging

Optimization: Speed or Dynamic Range

Settling Time, Frequency, and Phase (Opt. 12)*13

Settled Frequency Uncertainty, 95% Confidence (Typical), at Stated Measurement Frequencies, Bandwidths, and # of Averages

Measurement Frequency, Averages

Frequency Uncertainty at Stated Measurement Bandwidth

110 MHz

10 MHz

1 MHz

100 kHz

1 GHz

Single Measurement

2 kHz

100 Hz

10 Hz

1 Hz

100 Averages

200 Hz

10 Hz

1 Hz

0.1 Hz

1000 Averages

50 Hz

2 Hz

1 Hz

0.05 Hz

10 GHz

Single Measurement

5 kHz

100 Hz

10 Hz

5 Hz

100 Averages

300 Hz

10 Hz

1 Hz

0.5 Hz

1000 Averages

100 Hz

5 Hz

0.5 Hz

0.1 Hz

20 GHz

Single Measurement

2 kHz

100 Hz

10 Hz

5 Hz

100 Averages

200 Hz

10 Hz

1 Hz

0.5 Hz

1000 Averages

100 Hz

5 Hz

0.5 Hz

0.2 Hz

 

Settled Phase Uncertainty, 95% Confidence (Typical), at Stated Measurement Frequencies, Bandwidths, and # of Averages

Measurement Frequency, Averages

Phase Uncertainty at Stated Measurement Bandwidth

   

110 MHz

10 MHz

1 MHz

1 GHz

Single Measurement

1.00°

0.50°

0.50°

100 Averages

0.10°

0.05°

0.05°

1000 Averages

0.05°

0.01°

0.01°

10 GHz

Single Measurement

1.50°

1.00°

0.50°

100 Averages

0.20°

0.10°

0.05°

1000 Averages

0.10°

0.05°

0.02°

20 GHz

Single Measurement

1.00°

0.50°

0.50°

100 Averages

0.10°

0.05°

0.05°

1000 Averages

0.05°

0.02°

0.02°

*13 Measured input signal level > –20 dBm, Attenuator: Auto.

Advanced Measurement Suite

Characteristic

Description

Measurements

Average On Power, Peak Power, Average Transmitted Power, Pulse Width, Rise Time, Fall Time, Repetition Interval (seconds), Repetition Interval (Hz), Duty Factor (%), Duty Factor (Ratio), Ripple (dB), Ripple (%), Droop (dB), Droop (%), Overshoot (dB), Overshoot (%), Pulse-Pulse Frequency Difference, Pulse-Pulse Phase Difference, RMS Frequency Error, Max Frequency Error, RMS Phase Error, Max Phase Error, Frequency Deviation, Phase Deviation, Impulse Response (dB), Impulse Response (Time), Time Stamp

Minimum Pulse Width for Detection

150 ns (standard, Opt. 40), 50 ns (Opt. 110)

Number of Pulses

1 to 10,000

System Rise Time (Typical)

<40 ns (standard), <17 ns (Opt. 40), <12 ns (Opt. 110)

Pulse Measurement Accuracy

Signal Conditions: Unless otherwise stated, Pulse Width >450 ns (150 ns, Opt. 110), S/N Ratio ≥30 dB, Duty Cycle 0.5 to 0.001, Temperature 18 °C to 28 °C

Impulse Response

Measurement Range: 15 to 40 dB across the width of the chirp

Measurement Accuracy (typical): ±2 dB for a signal 40 dB in amplitude and delayed 1% to 40% of the pulse chirp width*14

Impulse Response Weighting

Taylor Window

*14 Chirp Width 100 MHz, Pulse Width 10 μs, minimum signal delay 1% of pulse width or 10/(chirp bandwidth), whichever is greater, and minimum 2000 sample points during pulse on-time.

Pulse Measurement Performance

Pulse Amplitude and Timing

Measurement

Accuracy (Typical)

Average On Power*15

±0.3 dB + Absolute Amplitude Accuracy

Average Transmitted Power*15

±0.4 dB + Absolute Amplitude Accuracy

Peak Power*15

±0.4 dB + Absolute Amplitude Accuracy

Pulse Width

±3% of reading

Duty Factor

±3% of reading

*15 Pulse Width >300 ns (100 ns, Opt. 110) SNR ≥30 dB.

Frequency and Phase Error Referenced to Nonchirped Signal

Bandwidth

CF: 2 GHz

Abs. Freq Err (RMS)

Pulse-to-Pulse Freq

Pulse-to-Pulse Phase

At stated frequencies and measurement bandwidths*16, 95% confidence.

20 MHz

±10 kHz

±30 kHz

±0.3°

60 MHz

(Opt. 110)

±26 kHz

±80 kHz

±0.7°

*16 Pulse ON Power ≥ –20 dBm, signal peak at Reference Level, Attenuator = Auto, tmeas – treference ≤ 10 ms, Frequency Estimation: Manual. Pulse-to-Pulse Measurement time position excludes the beginning and ending of the pulse extending for a time = (10 / Measurement BW) as measured from 50% of the t(rise) or t(fall). Absolute Frequency Error determined over center 50% of pulse.

Frequency and Phase Error Referenced to a Linear Chirp

Bandwidth

CF: 2 GHz

Abs. Freq Err (RMS)

Pulse-Pulse Freq

Pulse-Pulse Phase

At stated frequencies and measurement bandwidths*16, 95% confidence.

20 MHz

±17 kHz

±12 kHz

±0.3°

60 MHz

(Opt. 110)

±30 kHz

±130 kHz

±0.5°

*16 Pulse ON Power ≥ –20 dBm, signal peak at Reference Level, Attenuator = 0 dB, tmeas – treference ≤ 10 ms, Frequency Estimation: Manual. Pulse-to-Pulse Measurement time position excludes the beginning and ending of the pulse extending for a time = (10 / Measurement BW) as measured from 50% of the t(rise) or t(fall). Absolute Frequency Error determined over center 50% of pulse.

Note: Signal type: Linear Chirp, Peak-to-Peak Chirp Deviation: ≤0.8 Measurement BW.

Digital Modulation Analysis (Opt. 21)

Characteristic

Description

Modulation Formats

π/2DBPSK, BPSK, SBPSK, QPSK, DQPSK, π/4DQPSK, D8PSK, 8PSK, D16PSK, OQPSK, SOQPSK, CPM, 16/32/64/128/256QAM, MSK, 2-FSK, 4-FSK, 8-FSK, 16-FSK, C4FM

Analysis Period

Up to 80,000 Samples

Filter Types

   Measurement filters

Square-root raised cosine, raised cosine, Gaussian, rectangular, IS-95, IS-95 EQ, C4FM-P25, half-sine, None, User Defined

   Reference filters

Raised cosine, Gaussian, rectangular, IS-95, SBPSK-MIL, SOQPSK-MIL, SOQPSK-ARTM, None, User Defined

Alpha/B×T Range

0.001 to 1, 0.001 step

Measurements

Constellation, Error Vector Magnitude (EVM) vs. Time, Modulation Error Ratio (MER), Magnitude Error vs. Time, Phase Error vs. Time, Signal Quality, Symbol Table, rho

FSK only: Frequency Deviation, Symbol Timing Error

Symbol Rate Range

1 kS/s to 85 MS/s (Modulated signal must be contained entirely within acquisition BW)

Digital (Opt. 21)

Symbol Rate

Residual EVM (Typical)

QPSK Residual EVM*17

100 kS/s

<0.35%

1 MS/s

<0.35%

10 MS/s

<0.5%

30 MS/s (Opt. 40/110)

<1.5%

60 MS/s (Opt. 110)

<2.0%

256 QAM Residual EVM*18

10 MS/s

<0.4%

30 MS/s (Opt. 40/110)

<1.0%

60 MS/s (Opt. 110)

<1.5%

Offset QPSK Residual EVM*17

100 kS/s

<0.4%

1 MS/s

<0.4%

10 MS/s

<1.3%

S-OQPSK (MIL, ARTM) Residual EVM*19

4 kS/s,

CF = 250 MHz

<0.3%

20 kS/s

<0.5%

100 kS/s

<0.5%

1 MS/s

<0.5%

S-BPSK (MIL) Residual EVM*20

4 kS/s,

CF = 250 MHz

<0.2%

20 kS/s

<0.5%

100 kS/s

<0.5%

1 MS/s

<0.5%

CPM (MIL) Residual EVM*20

4 kS/s,

CF = 250 MHz

<0.3%

20 kS/s

<0.5%

100 kS/s

<0.5%

1 MS/s

<0.5%

2/4/8/16 FSK Residual RMS FSK Error*21

10 kS/s, deviation 10 kHz

<0.5%

*17 CF = 2 GHz, Measurement Filter = root raised cosine, Reference Filter = raised cosine,Analysis Length = 200 symbols.

*18 CF = 2 GHz, Measurement Filter = root raised cosine, Reference Filter = raised cosine,Analysis Length = 400 symbols.

*19 CF = 2 GHz unless otherwise noted. Reference Filters: MIL STD, ARTM, Measurement Filter: none.

*20 CF = 2 GHz unless otherwise noted. Reference Filter: MIL STD.

*21 CF = 2 GHz. Reference Filter: None, Measurement Filter: None.

Adaptive Equalizer

Characteristic

Description

Type

Linear, decision-directed, Feed-forward (FIR) equalizer with coefficient adaptation and adjustable convergence rate

Modulation Types Supported

BPSK, QPSK, OQPSK, π/2DBPSK, π/4DQPSK, 8PSK, 8DPSK, 16DPSK, 16/32/64/128/256QAM

Reference Filters for All Modulation Types except OQPSK

Raised Cosine, Rectangular, None

Reference Filters for OQPSK

Raised Cosine, Half Sine

Filter Length

1 to 128 taps

Taps/Symbol: Raised Cosine, Half Sine, No Filter

1, 2, 4, 8

Taps/Symbol: Rectangular Filter

1

Equalizer Controls

Off, Train, Hold, Reset

Flexible OFDM Characteristics (Opt. 22)

Characteristic

Description

Recallable Standards

WiMAX 802.16-2004, WLAN 802.11 a/g/j

Parameter settings

Guard Interval, Subcarrier Spacing, Channel Bandwidth

Advanced parameter settings

Carrier Detect: 802.11, 802.16-2004 – Auto-detect; Manual Select BPSK; QPSK, 16QAM, 64QAM

Channel Estimation: Preamble, Preamble + Data

Pilot Tracking: Phase, Amplitude, Timing

Frequency Correction: On, Off

Summary Measurements

Symbol Clock Error, Frequency Error, Average Power, Peak-to-Average, CPE

EVM (RMS and Peak) for all carriers, plot carriers, data carriers

OFDM Parameters: Number of Carriers, Guard Interval (%), Subcarrier Spacing (Hz), FFT Length

Power (Average, Peak-to-Average)

Displays

EVM vs. Symbol, vs. Subcarrier

Subcarrier Power vs. Symbol, vs. Subcarrier

Mag Error vs. Symbol, vs. Subcarrier

Phase Error vs. Symbol, vs. Subcarrier

Channel Frequency Response

Residual EVM

–44 dB (WiMAX 802.16-2004, 5 MHz BW)

–44 dB (WLAN 802.11g, 20 MHz BW)

(Signal input power optimized for best EVM)

Analog Modulation Analysis Accuracy (Typical)

Modulation

Description

AM

±2% (0 dBm Input at Center, Carrier Frequency 1 GHz, 10 to 60% Modulation Depth)

FM

±1% of Span

(0 dBm Input at Center)

(Carrier Frequency 1 GHz, 400 Hz/1 kHz Input/Modulated Frequency)

PM

±3°

(0 dBm Input at Center)

(Carrier Frequency 1 GHz, 1 kHz/5 kHz Input/Modulated Frequency)

Inputs And Outputs

Characteristic

Description

Front Panel

Display

Touch panel, 10.4 in. (264 mm)

RF Input Connector

N-type female, 50 Ω

Trigger Out

BNC, High: >2.0 V, Low: <0.4 V, output current 1 mA (LVTTL)

Trigger In

BNC, 50 Ω/5 kΩ impedance (nominal), ±5 V max input, –2.5 V to +2.5 V trigger level

USB Ports

(2) USB 2.0

Audio

Speaker

Rear Panel

10 MHz REF OUT

50 Ω, BNC, >0 dBm

External REF IN

50 Ω, 10 MHz, BNC

Trig 2 / Gate IN

BNC, High: 1.6 to 5.0 V, Low: 0 to 0.5 V

GPIB Interface

IEEE 488.2

LAN Interface Ethernet

RJ45, 10/100/1000BASE-T

USB Ports

(2) USB 2.0

VGA Output

VGA compatible, 15 DSUB

Audio Out

3.5 mm headphone jack

Noise Source Drive

BNC, +28 V, 140 mA (nominal)

Digital IQ Out

2 connectors, LVDS (Opt. 55)

RF Field Strength and Mapping

Characteristic

Description

RF Field Strength

Signal Strength Indicator

Located at right-side of display

Measurement Bandwidth

Up to 110 MHz, dependent on span and RBW setting

Tone Type

Variable frequency

Mapping

Map Types Directly Supported

Pitney Bowes MapInfo (*.mif), Bitmap (*.bmp)

Saved Measurement Results

Measurement data files (exported results)

Map file used for the measurements

Google Earth KMZ file

Recallable results files (trace and setup files)

MapInfo-compatible MIF/MID files

General Characteristics

Characteristic

Description

Temperature Range

   Operating

+5 °C to +40 °C

   Storage

–20 °C to +60 °C

Warm-up Time

20 min.

Altitude

   Operating

Up to 3000 m (approximately 10,000 ft.)

   Nonoperating

Up to 12,190 m (40,000 ft.)

Relative Humidity

   Operating and nonoperating

   (80% RH max when accessing DVD)

90% RH at 30 °C

(No condensation, max wet bulb, 29 °C)

Vibration

   Operating

0.22 GRMS: Profile = 0.00010 g2/Hz at 5-350 Hz,

–3 dB/octave slope from 350-500 Hz,

0.00007 g2/Hz at 500 Hz,

3 Axes at 10 min/axis

CD/DVD operation not specified under vibration

   Nonoperating

2.28 GRMS: Profile = 0.0175 g2/Hz at 5-100 Hz,

–3 dB/octave from 100-200 Hz,

0.00875 g2/Hz at 200-350 Hz,

–3 dB/octave from 350-500 Hz,

0.00613 g2/Hz at 500 Hz,

3 Axes at 10 min/axis

Shock

   Operating

15 G, half-sine, 11 ms duration. (1 G max when accessing DVD and Opt. 06 Removable HDD)

   Nonoperating

30 G, half-sine, 11 ms duration

Safety

UL 61010-1:2004

CSA C22.2 No.61010-1-04

Electromagnetic Compatibility,

Complies with:

EU Council EMC Directive 2004/108/EC

EN61326, CISPR 11, Class A

Power Requirements

90 VAC to 264 VAC, 50 Hz to 60 Hz

90 VAC to 132 VAC, 400 Hz

Power Consumption

450 W max

Data Storage

Internal HDD (Opt. 59), USB ports, DVD-R / CD-RW (Opt. 57), Removable HDD (Opt. 56)

Calibration Interval

One year

Warranty

One year

GPIB

SCPI-compatible, IEEE488.2 compliant

Physical Characteristics

Dimensions

mm

in.

Height

282

11.1

Width

473

18.6

Depth

531

20.9

Weight

kg

lb.

With All Options

24.6

54

Note: Physical characteristics, with feet.

Ordering Information

SPECMON3

Real Time Signal Analyzer, 1 Hz to 3 GHz

SPECMON6

Real Time Signal Analyzer, 1 Hz to 6.2 GHz

 

All Include: Quick-start Manual (Printed), Application Guide (Printed), Printable Online Help File (on CD), Programmer's manual (on CD), power cord, BNC-N adapter, USB Keyboard, USB Mouse, Front Cover, One-year Warranty.

 

Note: Please specify power plug and language options when ordering.

Options

Product

Options     

Description

SPECMON3

 

Real Time Spectrum Analyzer, 1 Hz-3 GHz, internal preamplifier, 25 MHz real-time bandwidth, pulse analysis suite, removable solid state drive, 3-year warranty

SPECMON6

 

Real Time Spectrum Analyzer, 1 Hz-6.2 GHz , internal preamplifier, 40 MHz real-time bandwidth, pulse analysis suite, removable solid state drive, 3-year warranty

   

Opt. 52

Frequency Mask Trigger

   

Opt. 53

Memory Extension, 4 GB Acquisition Memory Total

   

Opt. 55

Digital I and Q output

   

Opt. 10

AM/FM/PM Modulation and Audio Measurements

   

Opt. 11

Phase Noise / Jitter Measurement

   

Opt. 12

Settling Time (Frequency and Phase)

   

Opt. 21

General Purpose Modulation Analysis

   

Opt. 22

Flexible OFDM Analysis

   

Opt. 40

40 MHz Acquisition Bandwidth (SPECMON3 only)

   

Opt. 110

110 MHz Acquisition Bandwidth

   

Opt. 200

Advanced Triggers, Swept DPX, and DPX Zero Span

RSA56KR

 

Rackmount for RSA5K, RSA6K, SPECMON Real-Time Analyzers

Accessories

Accessory         

Description

RTPA2A Spectrum Analyzer Probe Adapter compatibility

Supports TekConnect® probes P7225, P7240, P7260, P7330, P7313, P7313SMA, P7340A, P7350, P7350SMA, P7360A, P7380A, P7380SMA, P7500 Series

RSAVu

Software based on the RSA3000 Series platform for analysis supporting 3G wireless standards, WLAN (IEEE802.11a/b/g/n), RFID, Audio Demodulation, and more measurements

E and H Near-field Probes

For EMI troubleshooting. 119-4146-xx

Additional Removable Hard Drive

Windows 7 and instrument SW preinstalled. 065-0924-xx

Transit Case

016-2026-xx

Rackmount Retrofit

RSA56KR

Additional Quick Start User Manual (Paper)

071-3064-xx

International Power Plugs

Option

Description

Opt. A0

North America power

Opt. A1

Universal Euro power

Opt. A2

United Kingdom power

Opt. A3

Australia power

Opt. A4

240 V, North America power

Opt. A5

Switzerland power

Opt. A6

Japan power

Opt. A10

China power

Opt. A11

India power

Opt. A12

Brazil power

Opt. A99

No power cord or AC adapter

Service

Option

Description

Opt. CA1

Single Calibration or Functional Verification

Opt. C3

Calibration Service 3 Years

Opt. C5

Calibration Service 5 Years

Opt. D1

Calibration Data Report

Opt. D3

Calibration Data Report 3 Years (with Opt. C3)

Opt. D5

Calibration Data Report 5 Years (with Opt. C5)

Opt. G3

Complete Care 3 Years (includes loaner, scheduled calibration and more)

Opt. G5

Complete Care 5 Years (includes loaner, scheduled calibration and more)

Opt. R3

Repair Service 3 Years

Opt. R5

Repair Service 5 Years

Upgrades

SPECMONUP – Upgrade Options for SPECMON3 / SPECMON6

SPECMONUP

Option Description

HW or SW

Factory Calibration Required?

   Opt. 52

Frequency Mask Trigger

SW

No

   Opt. 53

Memory Extension, 4 GB Acquisition Memory Total

HW

No

   Opt. 55

Digital IQ Output

HW

No

   Opt. 10

AM/FM/PM Modulation and Audio Measurements

SW

No

   Opt. 11

Phase Noise / Jitter Measurements

SW

No

   Opt. 12

Settling Time (Frequency and Phase)

SW

No

   Opt. 21

General Purpose Modulation Analysis

SW

No

   Opt. 22

Flexible OFDM Analysis

SW

No

   Opt. 40

SPECMON3 only: 40 MHz Acquisition Bandwidth

HW

Yes

   Opt. 110

110 MHz Acquisition Bandwidth

HW

Yes

   Opt. 200

Advanced DPX / Swept DPX with Density, Time Qualified, and Runt Triggers and Zero-span DPX

HW

No

Languages

Option      

Description

Opt. L0

English Manual

Opt. L5

Japanese Manual

Opt. L7

Simplified Chinese Manual

Opt. L10

Russian Manual

Select Service

X

STAY INFORMED: Events & Seminars | Email Newsletter | Follow Tektronix on Twitter Follow Tektronix on Facebook Follow Tektronix on Google+ Follow Tektronix on Youtube

MEMBERSHIP: Create an account for exclusive membership privileges. Learn More | Login